精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=|{x+\sqrt{3+a}}$|-$|{x-\sqrt{1-a}}$|,其中-3≤a≤1.
(Ⅰ)当a=1时,解不等式f(x)≥1;
(Ⅱ)对于任意α∈[-3,1],不等式f(x)≥m的解集为空集,求实数m的取值范围.

分析 (I)讨论x的范围,去掉绝对值符号,解出x的范围;
(II)利用绝对值不等式的性质和基本不等式得出f(x)的最大值,即可得出m的范围.

解答 解:(Ⅰ)当a=1时,f(x)=|x+2|-|x|,
①当x<-2时,不等式即为-x-2+x≥1,不等式无解;
②当-2≤x≤0时,不等式即为x+2+x≥1,解得$-\frac{1}{2}≤x≤0$;
③当x>0时,不等式即为x+2-x≥1,不等式恒成立.
综上所述,不等式的解集是$[{-\frac{1}{2},+∞})$.
(Ⅱ)由$f(x)=|{x+\sqrt{3+a}}|$$-|{x-\sqrt{1-a}}|≤$$\sqrt{3+a}+\sqrt{1-a}$.
而${({\sqrt{3+a}+\sqrt{1-a}})^2}$=$4+2\sqrt{({3+a})({1-a})}≤$4+4=8,
∴$\sqrt{3+a}+\sqrt{1-a}≤2\sqrt{2}$,∴$f(x)≤2\sqrt{2}$.
要使不等式f(x)≥m的解集为空集,则有$m>2\sqrt{2}$,
所以,实数m的取值范围是$({2\sqrt{2},+∞})$.

点评 本题考查了绝对值不等式的解法,绝对值不等式的性质,基本不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=$\frac{π}{3}$,BB1-=3,则侧棱BB1所在直线与平面AB1C1所成的角为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a为实数,且函数f(x)=(x2-4)(x-a),f'(-1)=0.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[-2,2]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,取相同的单位长度,建立极坐标系,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=sinα\\ y=cos2α\end{array}\right.$,($α∈[{0,\frac{π}{2}}]$,α为参数),曲线C2的极坐标方程为$θ=-\frac{π}{6}$,求曲线C1与曲线C2的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若数列{an}和{bn}的项数均为n,则将$\sum_{i=1}^n{|{a_i}-{b_i}|}$定义为数列{an}和{bn}的距离.
(1)已知${a_n}={2^n}$,bn=2n+1,n∈N*,求数列{an}和{bn}的距离dn
(2)记A为满足递推关系${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$的所有数列{an}的集合,数列{bn}和{cn}为A中的两个元素,且项数均为n.若b1=2,c1=3,数列{bn}和{cn}的距离大于2017,求n的最小值.
(3)若存在常数M>0,对任意的n∈N*,恒有$\sum_{i=1}^n{|{a_i}-{b_i}|}≤M$则称数列{an}和{bn}的距离是有界的.若{an}与{an+1}的距离是有界的,求证:$\{a_n^2\}$与$\{a_{n+1}^2\}$的距离是有界的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
物理及格物理不及格合计
数学及格28836
数学不及格162036
合计442872
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y为这2人中物理不及格的人数,记ξ=|X-Y|,求ξ的分布列及数学期望.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
P(X2≥k)0.1500.1000.0500.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-alnx-(a-2)x.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:$f'(\frac{{{x_1}+{x_2}}}{2})>0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.以椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的焦点为焦点的双曲线,如果离心率为2,那么该曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t为参数)与曲线$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ为参数)的公共点个数是2.

查看答案和解析>>

同步练习册答案