精英家教网 > 高中数学 > 题目详情
12.直线$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t为参数)与曲线$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ为参数)的公共点个数是2.

分析 求出直线和曲线的直角坐标方程,联立方程组,利用根的判别式能求出结果.

解答 解:直线$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t为参数)消去数得:y=tan75°x=(2+$\sqrt{3}$)x,
曲线$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ为参数)消去参数得:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\\{y=(2+\sqrt{3})x}\end{array}\right.$,得(67+36$\sqrt{3}$)x2=36,
△>0,∴直线$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t为参数)与曲线$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ为参数)的公共点个数是2.
故答案为:2.

点评 本题考查直线与曲线的公共点的个数的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=|{x+\sqrt{3+a}}$|-$|{x-\sqrt{1-a}}$|,其中-3≤a≤1.
(Ⅰ)当a=1时,解不等式f(x)≥1;
(Ⅱ)对于任意α∈[-3,1],不等式f(x)≥m的解集为空集,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t是参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ+4cosθ.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)判断曲线C1与曲线C2是否相交,若相交,求出交点A,B间的距离,若不想交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-2|+|x-4|的最小值为m,正实数a,b满足a+b=m.
(1)求m的值;
(2)求证:$\frac{1}{a}+\frac{1}{b}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知{an},{bn}是公差分别为d1,d2的等差数列,且An=an+bn,Bn=anbn.若A1=1,A2=3,则An=2n-1;若{Bn}为等差数列,则d1d2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\sqrt{1+{x^2}}$,x∈R.
(1)证明对?a、b∈R,且a≠b,总有:|f(a)-f(b)|<|a-b|;
(2)设a、b、c∈R,且$a+b+c=f(2\sqrt{2})$,证明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.把参数方程$\left\{\begin{array}{l}{x=\frac{4k}{1-{k}^{2}}}\\{y=\frac{4{k}^{2}}{1-{k}^{2}}}\end{array}\right.$(k为参数)化为普通方程,并说明它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)是定义在R上的可导函数,且对任意x∈R,满足f(x)+f'(x)>0,则对任意实数a,b(  )
A.a>b?eaf(b)>ebf(a)B.a>b?eaf(b)<ebf(a)C.a>b?eaf(a)<ebf(b)D.a>b?eaf(a)>ebf(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+$\frac{1}{1+\frac{1}{1+…}}$中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+$\frac{1}{x}$=x求得x=$\frac{\sqrt{5}+1}{2}$.类比上述过程,则$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=(  )
A.3B.$\frac{\sqrt{13}+1}{2}$C.6D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案