精英家教网 > 高中数学 > 题目详情
2.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+$\frac{1}{1+\frac{1}{1+…}}$中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+$\frac{1}{x}$=x求得x=$\frac{\sqrt{5}+1}{2}$.类比上述过程,则$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=(  )
A.3B.$\frac{\sqrt{13}+1}{2}$C.6D.2$\sqrt{2}$

分析 通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.

解答 解:由已知代数式的求值方法:
先换元,再列方程,解方程,求解(舍去负根),
可得要求的式子.
令$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=m(m>0),
则两边平方得,则3+2$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=m2
即3+2m=m2,解得,m=3,m=-1舍去.
故选:A

点评 本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线$\left\{\begin{array}{l}x=tcos{75°}\\ y=tsin{75°}\end{array}$(t为参数)与曲线$\left\{\begin{array}{l}x=3sinθ\\ y=2cosθ\end{array}$(θ为参数)的公共点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,则输出s的值等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是“二分法”求方程近似解的流程图,在①,②处应填写的内容分别是(  )
A.f(a)•f(m)<0?;b=mB.f(b)•f(m)<0?;b=mC.f(a)•f(m)<0?;m=bD.f(b)•f(m)<0?;b=m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,设边a,b,c所对的角分别为A,B,C,且a>c.已知△ABC的面积为$2\sqrt{2}$,$sin(A-B)+sinC=\frac{2}{3}sinA$,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为$50\sqrt{3}$米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.《孙子算经》是我国古代内容极为丰富的数学名著,其中一个问题的解答可以用如图的算法来实现,若输入的S,T的值分别为40,126,则输出a,b的值分别为(  )
A.17,23B.21,21C.19,23D.20,20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={-1,0,1,2,3},B={x|x2-2x>0},则A∩(∁RB)=(  )
A.{-1,3}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图的程序框图,如果输入的x1=2000,x2=2,x3=5,则输出的b的值为(  )
A.1B.2C.4D.5

查看答案和解析>>

同步练习册答案