精英家教网 > 高中数学 > 题目详情
11.函数y=(x+1)3当x=-1时(  )
A.有极大值B.有极小值
C.既无极大值,也无极小值D.无法判断

分析 利用导数判定函数的单调性,即可得出结论.

解答 解,y′=3(x+1)2≥0恒成立,所以函数在R上单调递增,
所以函数y=(x+1)3既无极大值,也无极小值.
故选:C

点评 本题考查了导数的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列参数方程中表示直线x+y-2=0的是(  )
A.$\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$为参数)B.$\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$为参数)
C.$\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$为参数)D.$\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在区间(0,5)内任取一个实数m,则满足3<m<4的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点P在椭圆C1:$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1上,点Q在椭圆C2:$\frac{{y}^{2}}{9}$+x2=1上,O为坐标原点,记ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,集合{(P,Q)|ω=$\overrightarrow{OP}$•$\overrightarrow{OQ}$},当ω取得最大值时,集合中符合条件的元素有几个(  )
A.2个B.4个C.8个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=$\frac{π}{3}$,BB1-=3,则侧棱BB1所在直线与平面AB1C1所成的角为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x<1,$log{\;}_{\frac{1}{3}}x<0$;命题q:?x0∈R,$x_0^2≥{2^{x_0}}$,则下列命题中为真命题的是(  )
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的前n项和为Sn,点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,等比数列{bn}满足bn+bn+1=an(n∈N*).其前n项和为Tn,则下列结论正确的是(  )
A.Sn=2TnB.Tn=2bn+1C.Tn>anD.Tn<bn+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}$x2-x+alnx(a>0)有两个极值点x1、x2,且x1<x2
(1)求a的取值范围;
(2)证明:f(x1)+f(x2)>$\frac{-3-2ln2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
物理及格物理不及格合计
数学及格28836
数学不及格162036
合计442872
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y为这2人中物理不及格的人数,记ξ=|X-Y|,求ξ的分布列及数学期望.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
P(X2≥k)0.1500.1000.0500.010
k2.0722.7063.8416.635

查看答案和解析>>

同步练习册答案