精英家教网 > 高中数学 > 题目详情
14.在区间(0,5)内任取一个实数m,则满足3<m<4的概率为$\frac{1}{5}$.

分析 直接利用区间测度比得答案.

解答 解:区间(0,5)的区间长度为5.
满足3<m<4的区间长度为1.
由测度比为长度比可得满足3<m<4的概率P=$\frac{1}{5}$.
故答案为:$\frac{1}{5}$.

点评 本题考查几何概型,明确测度比为测度比是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,将函数y=sin2x的图象向左平移$\frac{π}{12}$个单位得到函数g(x)的图象,则g($\frac{π}{12}$)的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的参数方程为$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α为参数,α∈[0,π]),直线l的极坐标方程为$ρ=\frac{4}{{\sqrt{2}sin({θ-\frac{π}{4}})}}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)P为曲线C上任意一点,Q为直线l任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的表面积为(  )
A.100π cm2B.$\frac{500π}{3}$ cm2C.400π cm2D.$\frac{4000π}{3}$ cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=2sinωx(0<ω<1)在区间$[{0,\frac{π}{3}}]$上的最大值为1,则ω=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x∈R|0<x≤5},B={x∈R|log2x<2},则(∁AB)∩Z=(  )
A.{4}B.{5}C.[4,5]D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)若曲线C向左平移一个单位,再经过伸缩变换$\left\{{\begin{array}{l}{x'=2x}\\{y'=y}\end{array}}\right.$得到曲线C',设M(x,y)为曲线C'上任一点,求$\frac{x^2}{4}-\sqrt{3}xy-{y^2}$的最小值,并求相应点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=(x+1)3当x=-1时(  )
A.有极大值B.有极小值
C.既无极大值,也无极小值D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下面几种推理是合情推理的是①②④
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;
③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)•180°.

查看答案和解析>>

同步练习册答案