| A. | $\frac{2}{e}f(2)<f(1)$ | B. | $\frac{2}{e}f(2)>f(1)$ | C. | f(1)>0 | D. | f(-1)>0 |
分析 构造函数g(x)=$\frac{xf(x)}{{e}^{x}}$,求导,判断g(x)的单调性,根据单调性即可判断.
解答 解:∵g(x)=$\frac{xf(x)}{{e}^{x}}$,
∴g′(x)=$\frac{f(x)-xf(x)+xf′(x)}{{e}^{x}}$,
∵f(x)+xf'(x)<xf(x),
∴g′(x)<0,
∴g(x)在R上为减函数,
∴g(2)<g(1),
∴$\frac{2f(2)}{{e}^{2}}$<$\frac{f(1)}{e}$,
即$\frac{2f(2)}{e}$<f(1),
故选:A
点评 本题主要考查导数与函数的单调性关系,以及利用条件构造函数,考查学生的解题构造能力和转化思想.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±2x | B. | y=±$\sqrt{5}$x | C. | y=±2$\sqrt{2}$x | D. | y=±$\sqrt{3}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com