17£®ÎªÌá¸ßÊг¡ÏúÊÛÒµ¼¨£¬Ä³¹«Ë¾Éè¼ÆÁ½ÌײúÆ·´ÙÏú·½°¸£¨·½°¸1ÔË×÷·ÑÓÃΪ5Ôª/¼þ£»·½°¸2µÄÔË×÷·ÑÓÃΪ2Ôª/¼þ£©£¬²¢ÔÚijµØÇø²¿·ÖÓªÏúÍøµã½øÐÐÊԵ㣨ÿ¸öÊÔµãÍøµãÖ»²ÉÓÃÒ»ÖÖ´ÙÏú·½°¸£©£¬ÔË×÷Ò»Äêºó£¬¶Ô±È¸ÃµØÇøÉÏÒ»Äê¶ÈµÄÏúÊÛÇé¿ö£¬·Ö±ðͳ¼ÆÏàÓ¦ÓªÏúÍøµã¸öÊý£¬ÖÆ×÷ÏàÓ¦µÄÁÐÁª±íÈç±íËùʾ£®
ÎÞ´ÙÏú»î¶¯²ÉÓôÙÏú·½°¸1²ÉÓôÙÏú·½°¸2
±¾Äê¶Èƽ¾ùÏúÊÛ¶î²»¸ßÓÚÉÏÒ»Äê¶Èƽ¾ùÏúÊÛ¶î48113190
±¾Äê¶Èƽ¾ùÏúÊÛ¶î¸ßÓÚÉÏÒ»Äê¶Èƽ¾ùÏúÊÛ¶î526929150
1008060
£¨¢ñ£©Çë¸ù¾ÝÁÐÁª±íÌṩµÄÐÅÏ¢£¬Îª¸Ã¹«Ë¾½ñÄêÑ¡ÔñÒ»Ì×½ÏΪÓÐÀûµÄ´ÙÏú·½°¸£¨²»±ØËµÃ÷ÀíÓÉ£©£»
£¨¢ò£©ÒÑÖª¸Ã¹«Ë¾²úÆ·µÄ³É±¾Îª10Ôª/¼þ£¨Î´°üÀ¨´ÙÏú»î¶¯ÔË×÷·ÑÓã©£¬ÎªÖƶ¨±¾Äê¶È¸ÃµØÇøµÄ²úÆ·ÏúÊÛ¼Û¸ñ£¬Í³¼ÆÉÏÒ»Äê¶ÈµÄ8×éÊÛ¼Ûxi£¨µ¥Î»£ºÔª/¼þ£¬ÕûÊý£©ºÍÏúÁ¿yi£¨µ¥Î»£º¼þ£©£¨i=1£¬2£¬¡­8£©Èç±íËùʾ£º
ÊÛ¼Ûx3335373941434547
ÏúÁ¿y840800740695640580525460
£¨¢¡£©Çë¸ù¾ÝÏÂÁÐÊý¾Ý¼ÆËãÏàÓ¦µÄÏà¹ØÖ¸ÊýR2£¬²¢¸ù¾Ý¼ÆËã½á¹û£¬Ñ¡ÔñºÏÊʵĻعéÄ£ÐͽøÐÐÄâºÏ£»
£¨¢¢£©¸ù¾ÝËùÑ¡»Ø¹éÄ£ÐÍ£¬·ÖÎöÊÛ¼Ûx¶¨Îª¶àÉÙʱ£¿ÀûÈóz¿ÉÒÔ´ïµ½×î´ó£®
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
$\sum_{i=1}^8{£¨{y_i}}-{\hat y_i}{£©^2}$49428.7411512.43175.26
$\sum_{i=1}^8{£¨{y_i}}-\overline y{£©^2}$124650
²Î¿¼¹«Ê½£ºÏà¹ØÖ¸ÊýM£®

·ÖÎö £¨I£©¸ù¾Ý±¾Äê¶Èƽ¾ùÏúÊÛ¶î¸ßÓÚÉÏÒ»Äê¶Èƽ¾ùÏúÊÛ¶îʱ£¬Á½ÖÖ·½°¸µÄ²ÉÓÃÊýÁ¿¶Ô±È½øÐÐÑ¡Ôñ£»
£¨II£©£¨i£©´úÈëÏà¹ØÖ¸Êý¹«Ê½¼ÆËã¼´¿É£¬²¢Ñ¡ÔñÏà¹ØÖ¸Êý×î´óµÄÄ£ÐÍ£»
£¨ii£©Çó³öÀûÈó¹ØÓÚÊۼ۵ĺ¯Êý¹ØÏµÊ½£¬ÀûÓõ¼ÊýÇó³öº¯ÊýµÄ¼«´óÖµµã¼´¿É£®

½â´ð ½â£º£¨¢ñ£©ÓÉÁÐÁª±íÐÅÏ¢¿ÉÖª£¬Äê¶Èƽ¾ùÏúÊÛ¶îÓë·½°¸1µÄÔË×÷Ïà¹ØÐÔÇ¿ÓÚ·½°¸2£®
£¨¢ò£©£¨¢¡£©ÓÉÒÑÖªÊý¾Ý¿ÉÖª£¬»Ø¹éÄ£ÐÍ$\hat y=-1200lnx+5000$¶ÔÓ¦µÄÏà¹ØÖ¸ÊýR12=1-$\frac{49428.74}{124650}$=0.6035£»
»Ø¹éÄ£ÐÍ$\hat y=-27x+1700$¶ÔÓ¦µÄÏà¹ØÖ¸ÊýR22=1-$\frac{11512.43}{124650}$=0.9076£»
»Ø¹éÄ£ÐÍ$\hat y=-\frac{1}{3}{x^2}+1200$¶ÔÓ¦µÄÏà¹ØÖ¸ÊýR32=1-$\frac{175.26}{124650}$=0.9986£®
ÒòΪ$R_3^2£¾R_2^2£¾R_1^2$£¬ËùÒÔ²ÉÓûعéÄ£ÐÍ$\hat y=-\frac{1}{3}{x^2}+1200$½øÐÐÄâºÏ×îΪºÏÊÊ£®
£¨¢¢£©ÓÉ£¨¢ñ£©¿ÉÖª£¬²ÉÓ÷½°¸1µÄÔË×÷Ч¹û½Ï·½°¸2ºÃ£¬
¹ÊÄêÀûÈó$z=£¨-\frac{1}{3}{x^2}+1200£©£¨x-15£©$£¬z'=-£¨x+30£©£¨x-40£©£¬
µ±x¡Ê£¨0£¬40£©Ê±£¬$z=£¨-\frac{1}{3}{x^2}+1200£©£¨x-15£©$µ¥µ÷µÝÔö£»
µ±x¡Ê£¨40£¬+¡Þ£©Ê±£¬$z=£¨-\frac{1}{3}{x^2}+1200£©£¨x-15£©$µ¥µ÷µÝ¼õ£®
¹Êµ±ÊÛ¼Ûx=40ʱ£¬ÀûÈó´ïµ½×î´ó£®

µãÆÀ ±¾Ì⿼²éÁ˻عé·ÖÎö£¬»Ø¹éÄ£Ð͵ıȽϣ¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßC£º$\frac{{x}^{2}}{4}$+y2=1
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄ²ÎÊý·½³Ì£»
£¨2£©ÈôµãMÔÚÇúÏßCÉÏÔ˶¯£¬ÊÔÇó³öMµ½Ö±ÏßlµÄ¾àÀëµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=|2x-a|+|x-1|£¬a¡ÊR£®
£¨¢ñ£©Èô²»µÈʽf£¨x£©¡Ý2-|x-1|ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©µ±a=1ʱ£¬Ö±Ïßy=mÓ뺯Êýf£¨x£©µÄͼÏóΧ³ÉÈý½ÇÐΣ¬ÇómµÄ×î´óÖµ¼°´ËʱΧ³ÉµÄÈý½ÇÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÈôÖ±Ïß$l£º\left\{\begin{array}{l}x=t\\ y=t-a\end{array}\right.$£¨tΪ²ÎÊý£©¹ýÍÖÔ²$C£º\left\{\begin{array}{l}x=3cos¦Õ\\ y=2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©µÄÓÒ¶¥µã£¬Ôò³£ÊýaµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Éè$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$¾ùΪ·ÇÁãÏòÁ¿£¬Èô|£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©•$\overrightarrow{c}$|=|£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©•$\overrightarrow{c}$|£¬Ôò£¨¡¡¡¡£©
A£®$\overrightarrow{a}$¡Î$\overrightarrow{b}$B£®$\overrightarrow{a}$¡Í$\overrightarrow{b}$C£®$\overrightarrow{a}$¡Î$\overrightarrow{c}$»ò$\overrightarrow{b}$¡Î$\overrightarrow{c}$D£®$\overrightarrow{a}$¡Í$\overrightarrow{c}$»ò$\overrightarrow{b}$¡Í$\overrightarrow{c}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚËıßÐÎABCDÖУ¬µãEÔÚBCÉÏ£¬¡ÏBAD=$\frac{2¦Ð}{3}$£¬AD£ºAC£ºCD=1£º2£º$\sqrt{3}$£®
£¨1£©Çó¡ÏBAC£»
£¨2£©ÈôAB=1£¬BE=3EC£¬AEƽ·Ö¡ÏBAC£¬ÇóAE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öSµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®$-\frac{{2\sqrt{3}}}{{tan\frac{¦Ð}{9}}}-21$B£®$\frac{{tan\frac{25¦Ð}{9}-\sqrt{3}}}{{tan\frac{¦Ð}{9}}}-22$
C£®$-\frac{{2\sqrt{3}}}{{tan\frac{¦Ð}{9}}}-22$D£®$\frac{{tan\frac{25¦Ð}{9}-\sqrt{3}}}{{tan\frac{¦Ð}{9}}}-21$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈçͼÖÐÁ÷³ÌͼµÄÔËÐнá¹ûÊÇ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªy=f£¨x£©ÊǶþ´Îº¯Êý£¬·½³Ìf£¨0£©=1£¬ÇÒf¡ä£¨x£©=2x+2
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£®
£¨2£©Çóº¯Êýy=f£¨x£©Óëy=-x2-4x+1ËùΧ³ÉµÄͼÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸