分析 直线l消去参数得x-y-a=0,椭圆C的普通方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,椭圆C的右项点为(3,0),由此利用直线l过椭圆C的右顶点,能求出a.
解答 解:直线$l:\left\{\begin{array}{l}x=t\\ y=t-a\end{array}\right.$(t为参数)消去参数得x-y-a=0,
椭圆$C:\left\{\begin{array}{l}x=3cosφ\\ y=2sinφ\end{array}\right.$(φ为参数)消去参数得椭圆C的普通方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,
椭圆C的右项点为(3,0),
∵直线l过椭圆C的右顶点,∴3-0-a=0,解得a=3.
故答案为:3.
点评 本题考查实数的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}∥\overrightarrow{BC}$ | B. | $\overrightarrow{AB}∥\overrightarrow{AD}$ | C. | $\overrightarrow{BC}∥\overrightarrow{AC}$ | D. | $\overrightarrow{AC}∥\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (42,56] | B. | (20,30] | C. | (30,42] | D. | (20,42) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6π | B. | 12π | C. | 18π | D. | $9\sqrt{2}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 无促销活动 | 采用促销方案1 | 采用促销方案2 | ||
| 本年度平均销售额不高于上一年度平均销售额 | 48 | 11 | 31 | 90 |
| 本年度平均销售额高于上一年度平均销售额 | 52 | 69 | 29 | 150 |
| 100 | 80 | 60 |
| 售价x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
| 销量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
| $\hat y=-1200lnx+5000$ | $\hat y=-27x+1700$ | $\hat y=-\frac{1}{3}{x^2}+1200$ | |
| $\sum_{i=1}^8{({y_i}}-{\hat y_i}{)^2}$ | 49428.74 | 11512.43 | 175.26 |
| $\sum_{i=1}^8{({y_i}}-\overline y{)^2}$ | 124650 | ||
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $36+12\sqrt{3}$ | B. | $24+8\sqrt{3}$ | C. | $24+12\sqrt{3}$ | D. | $36+8\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com