精英家教网 > 高中数学 > 题目详情
7.已知数列{an}和{bn},其中an=n2,n∈N*,{bn}的项是互不相等的正整数,若对于任意n∈N*,{bn}的第an项等于{an}的第bn项,则$\frac{lg({b}_{1}{b}_{4}{b}_{9}{b}_{16})}{lg({b}_{1}{b}_{2}{b}_{3}{b}_{4})}$=2.

分析 an=n2,n∈N*,若对于一切n∈N*,{bn}中的第an项恒等于{an}中的第bn项,可得${b}_{{a}_{n}}$=${a}_{{b}_{n}}$=$({b}_{n})^{2}$.于是b1=a1=1,$({b}_{2})^{2}$=b4,$({b}_{3})^{2}$=b9,$({b}_{4})^{2}$=b16.即可得出.

解答 解:∵an=n2,n∈N*,若对于一切n∈N*,{bn}中的第an项恒等于{an}中的第bn项,
∴${b}_{{a}_{n}}$=${a}_{{b}_{n}}$=$({b}_{n})^{2}$.
∴b1=a1=1,$({b}_{2})^{2}$=b4,$({b}_{3})^{2}$=b9,$({b}_{4})^{2}$=b16
∴b1b4b9b16=$({b}_{1}{b}_{2}{b}_{3}{b}_{4})^{2}$.
∴$\frac{lg({b}_{1}{b}_{4}{b}_{9}{b}_{16})}{lg({b}_{1}{b}_{2}{b}_{3}{b}_{4})}$=2.
故答案为:2.

点评 本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知(3+2i)x=2-yi,其中 x,y是实数,则|x+yi|=(  )
A.2B.$\frac{{2\sqrt{5}}}{3}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.a2+b2=1是asinθ+bcosθ≤1恒成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足$z=\frac{a+i}{2-i}+a$为纯虚数,则复数|z|的模为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:
投资股市获利40%不赔不赚亏损20%购买基金获利20%不赔不赚亏损10%
概率P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$概率Pp$\frac{1}{3}$q
( I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于$\frac{4}{5}$,求p的取值范围;
( II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出$p=\frac{1}{2}$,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(1-3x)10=a0+a1(2+x)+a2(2+x)2+…+a10(2+x)10,则a5+a6等于-162×355

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|x2+2x-8<0},集合B={x|-2<x<4},则A∩B等于(  )
A.B.(-2,3)C.(-2,4)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由曲线4x2+y2=1变换为曲线:4x2+4y2=1,伸压变换所对应的矩阵为$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=1-2sin2x在点$({\frac{π}{4},f({\frac{π}{4}})})$处的切线为l,则直线l、曲线f(x)以及直线$x=\frac{π}{2}$所围成的区域的面积为$\frac{π^2}{16}-\frac{1}{2}$.

查看答案和解析>>

同步练习册答案