精英家教网 > 高中数学 > 题目详情
5.由曲线4x2+y2=1变换为曲线:4x2+4y2=1,伸压变换所对应的矩阵为$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.

分析 根据题意,设伸压变换所对应的矩阵为A,设P(x,y)为曲线4x2+y2=1,在矩阵A对应的变换下变为另一个点P'(x',y'),分析可得$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$,解可得矩阵A,即可得答案.

解答 解:设伸压变换所对应的矩阵为A,
设P(x,y)为曲线4x2+y2=1,即(2x)2+y2=1上的任意一点,在矩阵A对应的变换下变为另一个点P'(x',y'),
则有(2x′)2+(2y′)2=1,
∴$\left\{\begin{array}{l}{x=x′}\\{y=2y′}\end{array}\right.$,即$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$,
即$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,
故A=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,
故答案为:$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.

点评 本题主要考查了特殊矩阵的变换,以及矩阵变换的应用,同时考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设P为双曲线${x^2}-\frac{y^2}{15}=1$右支上一点,M,N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}和{bn},其中an=n2,n∈N*,{bn}的项是互不相等的正整数,若对于任意n∈N*,{bn}的第an项等于{an}的第bn项,则$\frac{lg({b}_{1}{b}_{4}{b}_{9}{b}_{16})}{lg({b}_{1}{b}_{2}{b}_{3}{b}_{4})}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.观察数列1,2,2,3,3,3,8,8,8,…的特点,按此规律,则第100项为(  )
A.213B.214C.215D.216

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知常数p>0,数列{an}满足an+1=|p-an|+2an+p,n∈N*.
(1)若a1=-1,p=1,
①求a4的值;
②求数列{an}的前n项和Sn
(2)若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,求$\frac{{a}_{1}}{p}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,已知点P(0,1)在圆C:x2+y2+2mx-2y+m2-4m+1=0内,若存在过点P的直线交圆C于A、B两点,且△PBC的面积是△PAC的面积的2倍,则实数m的取值范围为($\frac{4}{9}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将一个大正方形平均分成9个小正方形,向大正方形区域随机投掷一个点(每次都能投中),投中最左侧三个小正方形区域的事件记为A,投中最上面三个小正方形区域或正中间的一个小正方形区域的事件记为B,则P(A|B)=(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,函数f(x)=ln(x-1)-a(x-2),g(x)=ex+(a2-2)x
(1)求f(x)在区间[2,3]上的最小值;
(2)设h(x)=af(x+2)+g(x),当x≥0时,h(x)≥-1恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案