分析 根据题意,设伸压变换所对应的矩阵为A,设P(x,y)为曲线4x2+y2=1,在矩阵A对应的变换下变为另一个点P'(x',y'),分析可得$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$,解可得矩阵A,即可得答案.
解答 解:设伸压变换所对应的矩阵为A,
设P(x,y)为曲线4x2+y2=1,即(2x)2+y2=1上的任意一点,在矩阵A对应的变换下变为另一个点P'(x',y'),
则有(2x′)2+(2y′)2=1,
∴$\left\{\begin{array}{l}{x=x′}\\{y=2y′}\end{array}\right.$,即$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$,
即$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,
故A=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,
故答案为:$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.
点评 本题主要考查了特殊矩阵的变换,以及矩阵变换的应用,同时考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com