精英家教网 > 高中数学 > 题目详情
10.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程.

分析 (Ⅰ)由曲线C的极坐标方程求出曲线C的直角坐标方程为x2+y2=4,直线l的参数方程代入x2+y2=4,得:t2+2tcosα-3=0,由此利用根的判别式能证明不论t为何值,直线l与曲线C恒有两个公共点.
(Ⅱ)设直线l与曲线C的交点A,B对应的参数分别为t1,t2,弦AB的中点P对应的参数为t0,由中点坐标公式得${t}_{0}=\frac{{t}_{1}+{t}_{2}}{2}=-cosα$,代入$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$中,能求出弦AB的中点的轨迹方程,由此能求出弦AB的中点轨迹的参数方程.

解答 证明:(Ⅰ)∵曲线C的极坐标方程为ρ=2,
∴曲线C的直角坐标方程为x2+y2=4,
直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数)代入x2+y2=4,
得:t2+2tcosα-3=0,(*)
由△=(2cosα)2-4×(-3)>0,
知方程(*)恒有两个不相等实根,
故不论t为何值,直线l与曲线C恒有两个公共点.
解:(Ⅱ)设直线l与曲线C的交点A,B对应的参数分别为t1,t2
弦AB的中点P对应的参数为t0
则由(*)可知:${t}_{0}=\frac{{t}_{1}+{t}_{2}}{2}=-cosα$,
代入$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$中,
整理得弦AB的中点的轨迹方程为$\left\{\begin{array}{l}{x=1-co{s}^{2}α}\\{y=-sinαcosα}\end{array}\right.$,
∴弦AB的中点轨迹的参数方程为$\left\{\begin{array}{l}{x=\frac{1-cos2α}{2}}\\{y=-\frac{1}{2}sin2α}\end{array}\right.$,(α为参数).

点评 本题考查直线与曲线恒有两个公共点的证明,考查弦的中点轨迹的参数方程的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(1-3x)10=a0+a1(2+x)+a2(2+x)2+…+a10(2+x)10,则a5+a6等于-162×355

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图.

(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
附注:参考数据:$\sum_{i=1}^7{y_i}$=9.32,$\sum_{i=1}^7{{t_i}{y_i}}$=40.17,$\sqrt{\sum_{i=1}^7{{{({y_i}-\bar y)}^2}}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:r=$\frac{{\sum_{i=1}^n{({t_i}-\bar t)({y_i}-\bar y)}}}{{\sqrt{\sum_{i=1}^n{{{({t_i}-\bar t)}^2}\sum_{i=1}^n{{{({y_i}-\bar y)}^2}}}}}}=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t•\overline y}}}{{\sqrt{\sum_{i=1}^n{{{({t_i}-\bar t)}^2}\sum_{i=1}^n{{{({y_i}-\bar y)}^2}}}}}}$
回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t中斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由曲线4x2+y2=1变换为曲线:4x2+4y2=1,伸压变换所对应的矩阵为$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1的极坐标方程为ρ=4cosθ,直线l的方程为$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数).
(Ⅰ)求曲线C1的直角坐标方程及直线l的普通方程;
(Ⅱ)若曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α为参数),曲线C1上点P的极坐标为$(ρ,\frac{π}{4})$,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\frac{\sqrt{3}}{3}$x-y=0的极坐标方程(限定ρ≥0)是(  )
A.θ=$\frac{π}{6}$B.θ=$\frac{7}{6}$πC.θ=$\frac{π}{6}$和θ=$\frac{7}{6}$πD.θ=$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,且a≠1,函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{a})^{x}-1,x≤0}\\{{x}^{2}+(4a-1)x+3a-1,x>0}\end{array}\right.$在R上单调递增,且关于x的方程|f(x)|=x+1恰有两个不相等的实数根,则a的取值范围是(  )
A.[$\frac{1}{3}$,1)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+x-2<0},N={x|x+1<0},则M∩N=(  )
A.(-1,1)B.(-2,-1)C.(-2,1)D.(1,2)

查看答案和解析>>

同步练习册答案