15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬Ö±ÏßlµÄ·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì¼°Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÈôÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÇúÏßC1ÉϵãPµÄ¼«×ø±êΪ$£¨¦Ñ£¬\frac{¦Ð}{4}£©$£¬QΪÇúÏßC2Éϵ͝µã£¬ÇóPQµÄÖеãMµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º¦Ñ2=4¦Ñcos¦È£¬½«¦Ñ2=x2+y2£¬x=¦Ñcos¦È£¬´úÈë¼´¿ÉÇóµÃÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£¬ÏûÈ¥²ÎÊýt£¬¼´¿ÉÇóµÃÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÇóµÃPQÖеãMµÄ×ø±ê£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°¸¨Öú½Ç¹«Ê½»¯¼ò£¬¸ù¾ÝÕýÏÒº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇóµÃPQµÄÖеãMµ½Ö±Ïßl¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬Ôò¦Ñ2=4¦Ñcos¦È£¬
ÓɦÑ2=x2+y2£¬x=¦Ñcos¦È£¬´úÈëÕûÀí£ºx2+y2-4x=0
ÇúÏß${C_1}£º{x^2}+{y^2}-4x=0$£¬
½«Ö±Ïßl²ÎÊýtÏûÈ¥£¬¼´¿ÉÇóµÃÖ±Ïßl£ºx+2y-3=0£»¡­£¨5·Ö£©
£¨2£©ÓÉ$P£¨2\sqrt{2}£¬\frac{¦Ð}{4}£©$£¬Ö±½Ç×ø±êΪ£¨2£¬2£©£¬$Q£¨2cos¦Á£¬sin¦Á£©£¬M£¨1+cos¦Á£¬1+\frac{1}{2}sin¦Á£©$£¬
ÔòMµ½Ö±ÏßlµÄ¾àÀëd=$\frac{Ø­1+cos¦Á+2£¨1+\frac{1}{2}sin¦Á£©-3Ø­}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{\sqrt{10}}{5}$Ø­sin£¨¦Á+$\frac{¦Ð}{4}$£©Ø­£¬
ÓÉÕýÏÒº¯ÊýµÄÐÔÖÊ¿ÉÖª£º0¡ÜØ­sin£¨¦Á+$\frac{¦Ð}{4}$£©Ø­¡Ü1£¬
¡àPQµÄÖеãMµ½Ö±ÏßlµÄ×î´óֵΪ$\frac{{\sqrt{10}}}{5}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄ¼«×ø±ê£¬Ö±ÏߵIJÎÊý·½³Ì£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¸÷ÏΪÁãµÄÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒa1=1£¬Sn=panan+1£¨n¡ÊN*£©£¬p¡ÊR£®
£¨1£©Èôa1£¬a2£¬a3³ÉµÈ±ÈÊýÁУ¬ÇóʵÊýpµÄÖµ£»
£¨2£©Èôa1£¬a2£¬a3³ÉµÈ²îÊýÁУ¬
¢ÙÇóÊýÁÐ{an}µÄͨÏʽ£»
¢ÚÔÚanÓëan+1¼ä²åÈën¸öÕýÊý£¬¹²Í¬×é³É¹«±ÈΪqnµÄµÈ±ÈÊýÁУ¬Èô²»µÈʽ£¨qn£©£¨n+1£©£¨n+a£©¡Üe¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýaµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®½«3ö¾ùÔȵÄÓ²±Ò¸÷Å×ÖÀÒ»´Î£¬Ç¡ÓÐ1öÕýÃæ³¯ÉϵĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{8}$B£®$\frac{1}{3}$C£®$\frac{3}{8}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚ¼«×ø±êϵÖУ¬µã$£¨2£¬\frac{¦Ð}{3}£©$Óëµã£¨1£¬0£©µÄ¾àÀëΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{4+\frac{¦Ð^2}{9}}$C£®$\sqrt{1+\frac{¦Ð^2}{9}}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨¢ñ£©Ö¤Ã÷£º²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£»
£¨¢ò£©ÒÔ¦ÁΪ²ÎÊý£¬ÇóÖ±ÏßlÓëÇúÏßCÏཻËùµÃÏÒABµÄÖеã¹ì¼£µÄ²ÎÊý·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªµãMµÄ¼«×ø±êΪ£¨6£¬$\frac{11¦Ð}{6}$£©£¬ÔòµãM¹ØÓÚyÖá¶Ô³ÆµÄµãµÄÖ±½Ç×ø±êΪ£¨¡¡¡¡£©
A£®£¨-3$\sqrt{3}$£¬-3£©B£®£¨3$\sqrt{3}$£¬-3£©C£®£¨-3$\sqrt{3}$£¬3£©D£®£¨3$\sqrt{3}$£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¸ù¾ÝÈçÏÂÑù±¾Êý¾Ý
x234567
y4.12.5-0.50.5-2.0-3.0
µÃµ½µÄ»Ø¹é·½³ÌΪ$\widehaty=\hat bx+\hat a$£¬Ôò£¨¡¡¡¡£©
A£®$\hat a£¾0£¬\hat b£¾0$B£®$\hat a£¾0£¬\hat b£¼0$C£®$\hat a£¼0£¬\hat b£¾0$D£®$\hat a£¼0£¬\hat b£¼0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÔ²C£ºx2+y2-2ax-2y+2=0£¨aΪ³£Êý£©ÓëÖ±Ïßy=xÏཻÓÚA£¬BÁ½µã£¬Èô¡ÏACB=$\frac{¦Ð}{3}$£¬ÔòʵÊýa=-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³ÊжԴ´¡°Êм¶Ê¾·¶ÐÔѧУ¡±µÄ¼×¡¢ÒÒÁ½ËùѧУ½øÐи´²éÑéÊÕ£¬¶Ô°ìѧµÄÉç»áÂúÒâ¶ÈÒ»ÏîÆÀ¼ÛËæ»ú·ÃÎÊÁË20λÊÐÃñ£¬Õâ20λÊÐÃñ¶ÔÕâÁ½ËùѧУµÄÆÀ·Ö£¨ÆÀ·ÖÔ½¸ß±íÃ÷ÊÐÃñµÄÆÀ¼ÛÔ½ºÃ£©µÄÊý¾ÝÈçÏ£º
¼×У£º58£¬66£¬71£¬58£¬67£¬72£¬82£¬92£¬83£¬86£¬67£¬59£¬86£¬72£¬78£¬59£¬68£¬69£¬73£¬81£»
ÒÒУ£º90£¬80£¬73£¬65£¬67£¬69£¬81£¬85£¬82£¬88£¬89£¬86£¬86£¬78£¬98£¬95£¬96£¬91£¬76£¬69£¬£®
¼ì²é×齫³É¼¨·Ö³ÉÁËËĸöµÈ¼¶£º³É¼¨ÔÚÇø¼ä[85£¬100]µÄΪAµÈ£¬ÔÚÇø¼ä[70£¬85£©µÄΪBµÈ£¬ÔÚÇø¼ä[60£¬70£©µÄΪCµÈ£¬ÔÚÇø¼ä[0£¬60£©ÎªDµÈ£®
£¨1£©ÇëÓþ¥Ò¶Í¼±íʾÉÏÃæµÄÊý¾Ý£¬²¢Í¨¹ý¹Û²ì¾¥Ò¶Í¼£¬¶ÔÁ½ËùѧУ°ìѧµÄÉç»áÂúÒâ¶È½øÐбȽϣ¬Ð´³öÁ½¸öͳ¼Æ½áÂÛ£»
£¨2£©¹À¼ÆÄÄËùѧУµÄÊÐÃñµÄÆÀ·ÖµÈ¼¶ÎªA¼¶»òB¼¶µÄ¸ÅÂÊ´ó£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸