精英家教网 > 高中数学 > 题目详情
16.已知各项不为零的数列{an}的前n项和为Sn,且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1,a2,a3成等比数列,求实数p的值;
(2)若a1,a2,a3成等差数列,
①求数列{an}的通项公式;
②在an与an+1间插入n个正数,共同组成公比为qn的等比数列,若不等式(qn(n+1)(n+a)≤e对任意的n∈N*恒成立,求实数a的最大值.

分析 (1)利用递推关系、等比数列的性质即可得出p.
(2)①利用递推关系、等差数列的性质即可得出an
②an=n,在n与n+1间插入n个正数,组成公比为qn的等比数列,故有$n+1=nq_n^{n+1}$,即${q_n}={(\frac{n+1}{n})^{\frac{1}{n+1}}}$,即${(\frac{n+1}{n})^{n+a}}≤e$,两边取对数得$(n+a)ln(\frac{n+1}{n})≤1$,分离参数得$a≤\frac{1}{{ln(\frac{n+1}{n})}}-n$恒成立.令$\frac{n+1}{n}=x$,x∈(1,2],则$a≤\frac{1}{lnx}-\frac{1}{x-1}$,x∈(1,2],令$f(x)=\frac{1}{lnx}-\frac{1}{x-1}$,x∈(1,2],利用导数研究其单调性极值与最值即可得出.

解答 解:(1)当n=1时,a1=pa1a2,${a_2}=\frac{1}{p}$,当n=2时,a1+a2=pa2a3,${a_3}=\frac{{{a_1}+{a_2}}}{{p{a_2}}}=1+\frac{1}{p}$,
由$a_2^2={a_1}{a_3}$得$\frac{1}{p^2}=1+\frac{1}{p}$,即p2+p-1=0,解得:$p=\frac{{-1±\sqrt{5}}}{2}$.      …(3分)
(2)①由2a2=a1+a3得$p=\frac{1}{2}$,故a2=2,a3=3,所以${S_n}=\frac{1}{2}{a_n}{a_{n+1}}$,
当n≥2时,${a_n}={S_n}-{S_{n-1}}=\frac{1}{2}{a_n}{a_{n+1}}-\frac{1}{2}{a_{n-1}}{a_n}$,
因为an≠0,所以an+1-an-1=2…(6分)
故数列{an}的所有奇数项组成以1为首项2为公差的等差数列,
其通项公式${a_n}=1+(\frac{n+1}{2}-1)×2=n$,…(7分)
同理,数列{an}的所有偶数项组成以2为首项2为公差的等差数列,
其通项公式是${a_n}=2+(\frac{n}{2}-1)×2=n$…(8分)
所以数列{an}的通项公式是an=n…(9分)
②an=n,在n与n+1间插入n个正数,组成公比为qn的等比数列,故有$n+1=nq_n^{n+1}$,
即${q_n}={(\frac{n+1}{n})^{\frac{1}{n+1}}}$,…(10分)
所以${({q_n})^{(n+1)(n+a)}}≤e$,即${(\frac{n+1}{n})^{n+a}}≤e$,两边取对数得$(n+a)ln(\frac{n+1}{n})≤1$,
分离参数得$a≤\frac{1}{{ln(\frac{n+1}{n})}}-n$恒成立                               …(11分)
令$\frac{n+1}{n}=x$,x∈(1,2],则$a≤\frac{1}{lnx}-\frac{1}{x-1}$,x∈(1,2],…(12分)
令$f(x)=\frac{1}{lnx}-\frac{1}{x-1}$,x∈(1,2],则$f'(x)=\frac{{{{(lnx)}^2}-\frac{{{{(x-1)}^2}}}{x}}}{{{{(lnx)}^2}{{(x-1)}^2}}}$,
下证$lnx≤\frac{x-1}{{\sqrt{x}}}$,x∈(1,2],
令$g(x)=x-\frac{1}{x}-2lnx,x∈(1,+∞)$,则$g'(x)=\frac{{{{(x-1)}^2}}}{x^2}>0$,所以g(x)>0,
即$2lnx<x-\frac{1}{x}$,用$\sqrt{x}$替代x可得$lnx<\frac{x-1}{{\sqrt{x}}}$,x∈(1,2],…(14分)
所以$f'(x)=\frac{{{{(lnx)}^2}-\frac{{{{(x-1)}^2}}}{x}}}{{{{(lnx)}^2}{{(x-1)}^2}}}<0$,所以f(x)在(1,2]上递减,
所以$a≤f(2)=\frac{1}{ln2}-1$…(16分)

点评 本题考查了等比数列的定义及其通项公式、递推式的应用、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(2x+φ)+2sin2x(|φ|<$\frac{π}{2}$)的图象过点($\frac{π}{6}$,$\frac{3}{2}$).
(1)求函数f(x)在[0,$\frac{π}{2}$]的最小值;
(2)设角C为锐角,△ABC的内角A、B、C的对边长分别为a、b、c,若x=C是曲线y=f(x)的一条对称轴,且△ABC的面积为2$\sqrt{3}$,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,点E在CD上,DE=2EC.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)若二面角E-BA-D的余弦值为$\frac{{\sqrt{15}}}{5}$,求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在如图所示的矩形ABCD中,AB=4,AD=2,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为(  )
A.12B.15C.17D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=cos(2x-\frac{2π}{3})+4{cos^2}x-2-\frac{3}{3x-π}(x∈[-\frac{11π}{12},\frac{19π}{12}])$所有零点之和为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cos(-α),sin(-α))$,那么$\overrightarrow a•\overrightarrow b=0$是α=kπ+$\frac{π}{4}$(k∈Z)的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(1+x)-x-ax2,a∈R.
(Ⅰ)若函数f(x)在区间$[{-\frac{1}{2},-\frac{1}{3}}]$上有单调递增区间,求实数a的取值范围;
(Ⅱ)证明不等式:$\frac{1}{ln2}+\frac{1}{ln3}+…+\frac{1}{ln(n+1)}>\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1的极坐标方程为ρ=4cosθ,直线l的方程为$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数).
(Ⅰ)求曲线C1的直角坐标方程及直线l的普通方程;
(Ⅱ)若曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α为参数),曲线C1上点P的极坐标为$(ρ,\frac{π}{4})$,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

同步练习册答案