精英家教网 > 高中数学 > 题目详情
4.在如图所示的矩形ABCD中,AB=4,AD=2,E为线段BC上的点,则$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为(  )
A.12B.15C.17D.16

分析 以B为坐标原点,分别以BC、BA所在直线为x、y轴建立平面直角坐标系,得到A、D的坐标,设出E的坐标,利用数量积的坐标运算求解.

解答 解:建立如图所示平面直角坐标系,

则A(0,4),D(2,4),
设E(x,0)(0≤x≤2),
则$\overrightarrow{AE}=(x,-4)$,$\overrightarrow{DE}=(x-2,-4)$.
∴$\overrightarrow{AE}•\overrightarrow{DE}=x(x-2)+16$=x2-2x+16=(x-1)2+15.
∴当x=1时,$\overrightarrow{AE}•\overrightarrow{DE}$的最小值为15.
故选:B.

点评 本题考查平面向量的数量积运算,建系起到事半功倍的效果,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=3sinx-4cosx(x∈R)的一个对称中心是(x0,0),则tanx0的值为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,PC⊥底面ABCD,M是PD的中点,AC⊥AD,BA⊥BC,PC=AC=2BC,∠ACD=∠ACB.
(1)求证:PA⊥CM;
(2)求二面角M-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知ω为正整数,若函数f(x)=sinωx+cosωx在区间(-$\frac{π}{3}$,$\frac{π}{6}$)内单调递增,则函数f(x)最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线l1:(2sinθ-1)x+2cosθ•y+1=0,l2:x+$\sqrt{3}$y-3=0,若l1⊥l2,则$cos(θ-\frac{π}{6})$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),则tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项不为零的数列{an}的前n项和为Sn,且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1,a2,a3成等比数列,求实数p的值;
(2)若a1,a2,a3成等差数列,
①求数列{an}的通项公式;
②在an与an+1间插入n个正数,共同组成公比为qn的等比数列,若不等式(qn(n+1)(n+a)≤e对任意的n∈N*恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{a_n}{2^n}={n^2}$+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{{{{(-1)}^n}{a_n}}}{2}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在极坐标系中,点$(2,\frac{π}{3})$与点(1,0)的距离为(  )
A.2B.$\sqrt{4+\frac{π^2}{9}}$C.$\sqrt{1+\frac{π^2}{9}}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案