精英家教网 > 高中数学 > 题目详情
13.观察数列1,2,2,3,3,3,8,8,8,…的特点,按此规律,则第100项为(  )
A.213B.214C.215D.216

分析 根据题意,找到相对应的规律,即可求出

解答 解:1,2,2,3,3,3,8,8,8,…可以为(20,21,21),(22-1,22-1,22-1,23,23,23),(24-1,24-1,24-1,24-1,24-1,25,25,25,25,25),…,可以看出第一个括号里有3个数,从第二括号开始,里面的数的个数是2(2n-1),
数列的数字的总个数为3+6+10+14+18+22+26+…,
而3+6+10+14+18+22+26=109,
故第100项为213
故选:A.

点评 本题考查的知识点是归纳推理,关键是寻找规律,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2x+sinx,不等式f(m2)+f(2m-3)<0(其中m∈R)的解集是(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足$z=\frac{a+i}{2-i}+a$为纯虚数,则复数|z|的模为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(1-3x)10=a0+a1(2+x)+a2(2+x)2+…+a10(2+x)10,则a5+a6等于-162×355

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|x2+2x-8<0},集合B={x|-2<x<4},则A∩B等于(  )
A.B.(-2,3)C.(-2,4)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图.

(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
附注:参考数据:$\sum_{i=1}^7{y_i}$=9.32,$\sum_{i=1}^7{{t_i}{y_i}}$=40.17,$\sqrt{\sum_{i=1}^7{{{({y_i}-\bar y)}^2}}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:r=$\frac{{\sum_{i=1}^n{({t_i}-\bar t)({y_i}-\bar y)}}}{{\sqrt{\sum_{i=1}^n{{{({t_i}-\bar t)}^2}\sum_{i=1}^n{{{({y_i}-\bar y)}^2}}}}}}=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t•\overline y}}}{{\sqrt{\sum_{i=1}^n{{{({t_i}-\bar t)}^2}\sum_{i=1}^n{{{({y_i}-\bar y)}^2}}}}}}$
回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t中斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由曲线4x2+y2=1变换为曲线:4x2+4y2=1,伸压变换所对应的矩阵为$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线$\frac{\sqrt{3}}{3}$x-y=0的极坐标方程(限定ρ≥0)是(  )
A.θ=$\frac{π}{6}$B.θ=$\frac{7}{6}$πC.θ=$\frac{π}{6}$和θ=$\frac{7}{6}$πD.θ=$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从1,2,3,4,5这五个数中一次随机取两个数,则取出的两个数的和为奇数的概率为$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案