精英家教网 > 高中数学 > 题目详情
17.已知(3+2i)x=2-yi,其中 x,y是实数,则|x+yi|=(  )
A.2B.$\frac{{2\sqrt{5}}}{3}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{1}{3}$

分析 利用复数相等、模的计算公式即可得出.

解答 解:(3+2i)x=3x+2xi=2-yi,其中 x,y是实数,
∴3x=2,2x=-y.
解得x=$\frac{2}{3}$,y=-$\frac{4}{3}$.
则|x+yi|=$\sqrt{(\frac{2}{3})^{2}+(-\frac{4}{3})^{2}}$=$\frac{2\sqrt{5}}{3}$.
故选:B.

点评 本题考查了复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,若双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{m}$=1(m>0)的离心率为$\frac{\sqrt{6}}{2}$,则该双曲线的两条渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,a1=a,当n≥2时,${S}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,an≠0,n∈N*.
(1)求a的值;
(2)设数列{cn}的前n项和为Tn,且cn=3n-1+a5,求使不等式4Tn>S10成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动点C到点F(1,0)的距离比到直线x=-2的距离小1,动点C的轨迹为E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m(km<0)与曲线E相交于A,B两个不同点,且$\overrightarrow{OA}•\overrightarrow{OB}=5$,证明:直线l经过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知函数y=2kx(k>0)与函数y=x2的图象所围成的阴影部分的面积为$\frac{32}{3}$,则实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ 2x-y-2≤0\end{array}\right.$z=x+y,则满足z≥1的点(x,y)所构成的区域面积等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|x2-8x+12≤0},B={x|x≥5},则A∩(∁RB)=(  )
A.[5,6]B.[2,5]C.[2,5)D.(-∞,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P为双曲线${x^2}-\frac{y^2}{15}=1$右支上一点,M,N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}和{bn},其中an=n2,n∈N*,{bn}的项是互不相等的正整数,若对于任意n∈N*,{bn}的第an项等于{an}的第bn项,则$\frac{lg({b}_{1}{b}_{4}{b}_{9}{b}_{16})}{lg({b}_{1}{b}_{2}{b}_{3}{b}_{4})}$=2.

查看答案和解析>>

同步练习册答案