精英家教网 > 高中数学 > 题目详情
5.已知动点C到点F(1,0)的距离比到直线x=-2的距离小1,动点C的轨迹为E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m(km<0)与曲线E相交于A,B两个不同点,且$\overrightarrow{OA}•\overrightarrow{OB}=5$,证明:直线l经过一个定点.

分析 (1)根据抛物线的定义,即可求得曲线E的方程;
(2)设直线l的方程,代入抛物线方程,利用韦达定理及向量数量积的坐标运算,求得m=-5k,即可求得直线l的方程,则直线l必经过定点(5,0).

解答 解:(1)由题意可得动点C到点F(1,0)的距离等于到直线x=-1的距离,
∴曲线E是以点(1,0)为焦点,直线x=-1为准线的抛物线,
设其方程为y2=2px(p>0),∴$\frac{p}{2}=1$,∴p=2,
∴动点C的轨迹E的方程为y2=4x;
(2)证明:设A(x1,y1),B(x2,y2),由$\left\{{\begin{array}{l}{y=kx+m}\\{{y^2}=4x}\end{array}}\right.$,整理得k2x2+(2km-4)x+m2=0,
∴${x_1}+{x_2}=\frac{4-2km}{k^2}$,${x_1}•{x_2}=\frac{m^2}{k^2}$.
∵$\overrightarrow{OA}•\overrightarrow{OB}=5$,
∴x1x2+y1y2=$(1+{k^2}){x_1}{x_2}+km({x_1}+{x_2})+{m^2}$=$\frac{{{m^2}+4km}}{k^2}=5$,
∴m2+4km-5k2=0,∴m=k或m=-5k,又km<0,m=k舍去,m=-5k,满足△=16(1-km)>0,
则直线l的方程为y=k(x-5),
∴直线l必经过定点(5,0).

点评 本题考查抛物线的定义,直线与抛物线的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=4+t\\ y=3t+6\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρtanθ=\frac{8}{sinθ}$.

(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过抛物线C:y2=2px(p>0)焦点F的直线l与C相交于A,B两点,与C的准线交于点D,若|AB|=|BD|,则直线l的斜率k=(  )
A.$±\frac{1}{3}$B.±3C.$±\frac{{2\sqrt{2}}}{3}$D.$±2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:x+y-4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(x-2)2+(y-2)2=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(m,-4),若$\overrightarrow{a}∥\overrightarrow{b}$,则实数m=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆C1与双曲线C2有相同的左右焦点F1、F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1,e2,且$\frac{{e}_{1}}{{e}_{2}}$=$\frac{1}{3}$,若∠F1PF2=$\frac{π}{3}$,则双曲线C2的渐近线方程为(  )
A.x±y=0B.x±$\frac{\sqrt{3}}{3}$y=0C.x±$\frac{\sqrt{2}}{2}$y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知(3+2i)x=2-yi,其中 x,y是实数,则|x+yi|=(  )
A.2B.$\frac{{2\sqrt{5}}}{3}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2x+sinx,不等式f(m2)+f(2m-3)<0(其中m∈R)的解集是(  )
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z满足$z=\frac{a+i}{2-i}+a$为纯虚数,则复数|z|的模为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案