精英家教网 > 高中数学 > 题目详情
16.过抛物线C:y2=2px(p>0)焦点F的直线l与C相交于A,B两点,与C的准线交于点D,若|AB|=|BD|,则直线l的斜率k=(  )
A.$±\frac{1}{3}$B.±3C.$±\frac{{2\sqrt{2}}}{3}$D.$±2\sqrt{2}$

分析 如图,设A,B两点的抛物线的准线上的射影分别为A′,B′,过B作AA′的垂线BH,在三角形ABH中,∠BAH等于直线AB的倾斜角,其正切值即为k值,利用在直角三角形ABN中,tan∠BAH=$\frac{丨BH丨}{丨AH丨}$,从而得出直线AB的斜率.

解答 解:如图,设A,B两点的抛物线的准线上的射影分别为A′,B′,
过B作AA′的垂线BH,
在三角形ABH中,∠BAH等于直线AB的倾斜角,其正切值即为丨k值,
由抛物线的定义可知:
设|BF|=n,B为AD中点,
根据抛物线的定义可知:丨AF丨=丨AA′丨,丨BF丨=丨BB′丨,丨BB′丨=丨AA′丨,
可得2|BF|=|AA′|,即|AF|=2|BF|,∴|AF|=2n,
|AA′|=2n,|BF|=n,
∴|AH|=n,
在直角三角形ABH中,tan∠BAH=$\frac{丨BH丨}{丨AH丨}$=$\frac{\sqrt{9{n}^{2}-{n}^{2}}}{n}$=2$\sqrt{2}$,
则直线l的斜率k=2$\sqrt{2}$;
同理求得:直线l的斜率k=-2$\sqrt{2}$;
故选:D.

点评 本题主要考察了直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x+1)=x2-2x
(1)求函数f(x)的解析式;
(2)若函数f(x)在x∈[0,5]时.关于x的方程f(x)=k总有实数解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,若双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{m}$=1(m>0)的离心率为$\frac{\sqrt{6}}{2}$,则该双曲线的两条渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a2=2,其前n项和Sn满足:${S_n}=\frac{{n({{a_n}-{a_1}})}}{2}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=n•{2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设i是虚数单位,若$\frac{z}{i}$=$\frac{i-3}{1+i}$,则复数z的虚部为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,a1=a,当n≥2时,${S}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,an≠0,n∈N*.
(1)求a的值;
(2)设数列{cn}的前n项和为Tn,且cn=3n-1+a5,求使不等式4Tn>S10成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动点C到点F(1,0)的距离比到直线x=-2的距离小1,动点C的轨迹为E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m(km<0)与曲线E相交于A,B两个不同点,且$\overrightarrow{OA}•\overrightarrow{OB}=5$,证明:直线l经过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P为双曲线${x^2}-\frac{y^2}{15}=1$右支上一点,M,N分别是圆(x+4)2+y2=4和(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m-n|=(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案