精英家教网 > 高中数学 > 题目详情
1.设i是虚数单位,若$\frac{z}{i}$=$\frac{i-3}{1+i}$,则复数z的虚部为(  )
A.-2B.2C.-1D.1

分析 把已知等式变形,利用复数代数形式的乘除运算化简得答案.

解答 解:由$\frac{z}{i}$=$\frac{i-3}{1+i}$=$\frac{(i-3)(1-i)}{(1+i)(1-i)}=-1+2i$,
得z=(-1+2i)i=-2-i.
∴复数z的虚部为-1,
故选:C.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.命题$?{x_0}∈R,{x_0}^2-2{x_0}+4>0$的否定是?x∈R,x2-2x+4≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正整数λ,μ为常数,且λ≠1,无穷数列{an}的各项均为正整数,其前n项和为Sn,且Sn=λan-μ.n∈N*.记数列{an}中任意不同两项的和构成的集合为A.
(1)求证:数列{an}为等比数列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)已知m≥1,求集合{x|3μ•2n-1<x<3μ•2n,x∈A}的元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$sin(\frac{π}{3}-α)=\frac{1}{4}$,则$cos(\frac{π}{3}+2α)$=(  )
A.$\frac{5}{8}$B.$-\frac{7}{8}$C.$-\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过抛物线C:y2=2px(p>0)焦点F的直线l与C相交于A,B两点,与C的准线交于点D,若|AB|=|BD|,则直线l的斜率k=(  )
A.$±\frac{1}{3}$B.±3C.$±\frac{{2\sqrt{2}}}{3}$D.$±2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(2x+φ)+2sin2x(|φ|<$\frac{π}{2}$)的图象过点($\frac{π}{6}$,$\frac{3}{2}$).
(1)求函数f(x)在[0,$\frac{π}{2}$]的最小值;
(2)设角C为锐角,△ABC的内角A、B、C的对边长分别为a、b、c,若x=C是曲线y=f(x)的一条对称轴,且△ABC的面积为2$\sqrt{3}$,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:x+y-4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(x-2)2+(y-2)2=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆C1与双曲线C2有相同的左右焦点F1、F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1,e2,且$\frac{{e}_{1}}{{e}_{2}}$=$\frac{1}{3}$,若∠F1PF2=$\frac{π}{3}$,则双曲线C2的渐近线方程为(  )
A.x±y=0B.x±$\frac{\sqrt{3}}{3}$y=0C.x±$\frac{\sqrt{2}}{2}$y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值为2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案