精英家教网 > 高中数学 > 题目详情

函数

   (1)如果函数是偶函数,求的极大值和极小值;

   (2)如果函数上的单调函数,求的取值范围.

解析:解:

   (Ⅰ)∵ 是偶函数,∴ .  

     此时

        令,解得:.

        列表如下:

(-∞,-2)

-2

(-2,2)

2

(2,+∞)

+

0

0

+

递增

极大值

递减

极小值

递增

             可知:的极大值为

                  的极小值为.  分

     (Ⅱ)∵

     解得:

这时恒成立,

∴ 函数上为单调递增函数.

     综上,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的单调递增区间;
(2)如果函f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[x]的函数值表示不超过x的最大整数,例如:[-3.5]=-4,[2.7]=2
(1)如果实数a满足[2a+3]=3,且[3a-1]=-1,求实数a的取值范围;
(2)如果函数g(x)=x-f(x),它的定义域为(-1,3)
①求g(-0.4)和g(2.2)的值;
②试用分段函数的形式写出函数g(x)的解析式,并作出函数g(x)的图象.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省内江市高一(上)期末数学试卷(解析版) 题型:解答题

已知函数f(x)=[x]的函数值表示不超过x的最大整数,例如:[-3.5]=-4,[2.7]=2
(1)如果实数a满足[2a+3]=3,且[3a-1]=-1,求实数a的取值范围;
(2)如果函数g(x)=x-f(x),它的定义域为(-1,3)
①求g(-0.4)和g(2.2)的值;
②试用分段函数的形式写出函数g(x)的解析式,并作出函数g(x)的图象.

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

同步练习册答案