精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的单调递增区间;
(2)如果函f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.
分析:(1)首先考虑函数的定义域,然后求出导函数=0时的值,讨论导数大于小于0时函数的递增递减区间即可;
(2)由题意可知导函数等于0时在(-1,+∞)有两个不等实根,即2x2+2x+b=0在(-1,+∞)有两个不等实根,设g(x)=2x2+2x+b=0,然后讨论根的判别式大于0即g(-1)大于0得到b的范围即可.
解答:解:(1)由题意知,f(x)的定义域为(-1,+∞),b=-12时,
f′(x)=2x-
12
x+1
=
2x2+2x-12
x+1
=0
,得x=2(x=-3舍去),
当x∈(-1,2)时,f'(x)<0,当x∈(2,+∞)时,f'(x)>0,
所以当x∈(2,+∞)时,f(x)单调递增.
(2)由题意 f′(x)=2x+
b
x+1
=
2x2+2x+b
x+1
=0
在(-1,+∞)有两个不等实根,
即2x2+2x+b=0在(-1,+∞)有两个不等实根,
设g(x)=2x2+2x+b,则
△=4-8b>0
g(-1)>0

解之得 0<b<
1
2
点评:考查学生利用导数研究函数单调性的能力,利用导数求函数极值的能力,理解函数恒成立条件的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案