精英家教网 > 高中数学 > 题目详情
(2012•黄浦区二模)现给出如下命题:
(1)若某音叉发出的声波可用函数y=0.002sin800πt(t∈R+)描述,其中t的单位是秒,则该声波的频率是400赫兹;
(2)在△ABC中,若c2=a2+b2+ab,则∠C=
π
3

(3)从一个总体中随机抽取一个样本容量为10的样本:11,10,12,10,9,8,9,11,12,8,则该总体标准差的点估计值是
2
5
3

则其中正确命题的序号是(  )
分析:(1)根据y=Asin(ωx+φ)中参数的物理意义求出函数的周期,进而可求频率;
(2)利用余弦定理表示出cosC,将已知的等式变形后代入,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;
(3)先计算平均数,再计算该总体标准差的点估计值即可.
解答:解:(1)根据三角函数的模型有关定义可得:该声波的周期为T=
800π
=
1
400
,∴频率是f=
1
T
=400赫兹,故(1)正确;
(2)∵c2=a2+b2+ab,即a2+b2-c2=-ab,∴由余弦定理得:cosC=-
1
2
,又∠C为三角形的内角,∴∠C=120°,故(2)不正确;
(3)这组数的平均数为
1
10
(11+10+12+10+9+8+9+11+12+8)
=10
∴该总体标准差的点估计值是
1
9
(1+4+1+4+1+1+4+4)
=
2
5
3
,故(3)正确.
综上知:(1)(3)正确
故选B.
点评:本题主要考查了y=Asin(ωx+φ)中参数的物理意义,考查了周期和频率;考查了余弦定理,以及特殊角的三角函数值,考查平均数与总体标准差的点估计值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,则cos2α=
63
65
63
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知函数f(x)=|x2-2ax+a|(x∈R),给出下列四个命题:
①当且仅当a=0时,f(x)是偶函数;
②函数f(x)一定存在零点;
③函数在区间(-∞,a]上单调递减;
④当0<a<1时,函数f(x)的最小值为a-a2
那么所有真命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)函数f(x)=log
1
2
(2x+1)
的定义域为
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步练习册答案