【题目】 已知函数(其中为参数).
(1)当时,证明:不是奇函数;
(2)如果是奇函数,求实数的值;
(3)已知,在(2)的条件下,求不等式的解集.
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中,.
(1)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与、的关系为.根据(2)的结果要求:年宣传费为何值时,年利润最大?
附:对于一组数据, ,…, 其回归直线的斜率和截距的最小二乘估计分别为, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若曲线在处的切线的方程为,求实数的值;
(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;
(3)若在上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;
(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:)
(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.
(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;
(2)设直线与圆交于不同的两点,且,求圆的方程;
(3)设直线与(2)中所求圆交于点、, 为直线上的动点,直线,与圆的另一个交点分别为,,且,在直线异侧,求证:直线过定点,并求出定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com