精英家教网 > 高中数学 > 题目详情
1、已知命题p:x2-2x-15≤0,命题q:x2-2x-m2+1≤0,且?p是?q的必要不充分条件,则实数m的取值范围为
m<-4或m>4
分析:利用不等式的解法求解出命题p,q中的不等式范围问题,结合二者的关系得出关于字母m的不等式,从而求解出m的取值范围.
解答:解:x2-2x-15≤0的解集为[-3,5],
故命题p成立有x∈[-3,5],
由x2-2x-m2+1≤0,
1°m≥0时,得x∈[1-m,m+1],
2°m<0时,得x∈[1+m,1-m],
故命题q成立有m≥0时,得x∈[1-m,m+1],m<0时,得x∈[1+m,1-m],
?p是?q的必要不充分条件,即p是q的充分不必要条件,
因此有∈[-3,5]⊆[1-m,m+1],或∈[-3,5]⊆[1+m,1-m],
解得m<-4或m>4
故m的范围是m<-4或m>4,
故答案为:m<-4或m>4.
点评:此题是中档题.本题考查一元二次不等式的解法,考查二次不等式与二次函数的关系,以及考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:x2+4x+3≥0,q:x∈Z,且“p且q”与“非q”同时为假命题,则x=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-4mx+3m2-2m-1<0(m>0),命题q:(x-1)(2-x)>0,若?p是?q充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2+x+2-m=0有一正一负两根,命题q:4x2+4(m-2)x+1=0无实根,若命题p与命题q有且只有一个为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-x≥6或x2-x≤-6,q:x∈Z,且p假q真,则x的值为
-1,0,1,2
-1,0,1,2

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知命题p:x≠2,命题q:x2≠4,则p是q的
必要不充分
必要不充分
条件.

查看答案和解析>>

同步练习册答案