精英家教网 > 高中数学 > 题目详情
3.y=2x,y′=2.

分析 根据导数公式求导即可.

解答 解:∵y=2x,
∴y′=2,
故答案为:2;

点评 本题考查了基本导数公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,集合A={1,b,a+b},$B=\left\{{0,\frac{a}{b},a}\right\}$,且A=B,则a+2b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校为了解高一新生对文理科的选择,对1000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
分数段理科人数文科人数
[40,50)
[50,60)
[60,70)
[70,80)正 一
[80,90)正 一
[90,100]
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.
(2)从考分不低于70分的选择理科和文科的学生中各取一名学生的数学成绩,求选取理科学生的数学成绩一定至少高于选取文科学生的数学成绩一个分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.请严格用三段论证明:函数$y=\frac{{{2^x}-1}}{{{2^x}+1}}$是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左、右顶点分别为A1(-2,0),A2(2,0).过点D(1,0)的直线l与该椭圆相交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线A1M与NA2的斜率分别为k1,k2,试问:是否存在实数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}为等差数列,Sn为其前n项和,已知S7=7,S15=75,
(1)求数{an}列的通项公式.
(2)记${b_n}=2{a_n}+5,{T_n}=\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,
是否存在最小的正整数m,使得对一切n∈N*,Tn<$\frac{m}{4}$恒成立?若存在求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某高校“统计初步”课程的教师随机调查了一些学生,具体数据如下表所示,根据此资料,你认为选修统计专业是否与性别有关系?
没选统计专业选统计专业
1310
720

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y)+4xy(x,y∈R),f(1)=2.则f(-2)=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a=${∫}_{0}^{2}$(1-3x2)dx+4,且(x+$\frac{1}{ax}$)n的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为(  )
A.-$\frac{1}{64}$B.$\frac{1}{32}$C.$\frac{1}{64}$D.$\frac{1}{128}$

查看答案和解析>>

同步练习册答案