| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
分析 先计算f(0)=0,再得出f(x)+f(-x)-4x2=0,令g(x)=f(x)-2x2,则g(x)为奇函数,通过计算g(-2)得出f(-2)的值.
解答 解:令x=y=0得f(0)=2f(0),∴f(0)=0,
再令y=-x,得f(0)=f(x)+f(-x)-4x2=0,
令g(x)=f(x)-2x2,则g(x)+g(-x)=f(x)+f(-x)-4x2=0,
∴g(x)=f(x)-2x2是奇函数,
∵f(2)=2f(1)+4=8,∴g(2)=f(2)-8=0,
∴g(-2)=f(-2)-8=0,
∴f(-2)=8.
故选C.
点评 本题考查了抽象函数的性质应用,奇函数的判断与性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 随机误差由解释变量和预报变量共同确定 | |
| B. | 预报变量只由解释变量确定 | |
| C. | 预报变量由解释变量和随机误差共同确定 | |
| D. | 随机误差只由预报变量确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-∞,1)∪(1,+∞)递减 | B. | 在(-∞,0)和(0,+∞,)递减 | ||
| C. | 在(-∞,1)∪(1,+∞)递增 | D. | 在(-∞,0)和(0,+∞)递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $4\sqrt{2}$ | C. | 8 | D. | $4\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com