精英家教网 > 高中数学 > 题目详情
17.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有210种以上(含210种)的不同选择,则餐厅至少还需准备7种不同的素菜.

分析 根据保证每位顾客有200种以上不同选择,可得C52•Cn2≥210,由此可得结论.

解答 解:设素菜n种,则C52•Cn2≥210⇒n(n-1)≥42,
所以n≥7,
所以n的最小值为7.
故答案为:7

点评 正确应用乘法计数原理,组合数以及不等式运算,n为最小正整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3000人,计算发现K2的观测值k=6.023,根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系这一断言犯错误的概率不超过(  )
P(K2≥k00.500.400.250.150.100.50.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0.1B.0.05C.0.025D.0.005

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}为等差数列,Sn为其前n项和,已知S7=7,S15=75,
(1)求数{an}列的通项公式.
(2)记${b_n}=2{a_n}+5,{T_n}=\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,
是否存在最小的正整数m,使得对一切n∈N*,Tn<$\frac{m}{4}$恒成立?若存在求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正数a,b,c满足4a-2b+25c=0,则lga+lgc-2lgb的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y)+4xy(x,y∈R),f(1)=2.则f(-2)=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-x
(1)求曲线y=f(x)在(1,f(1))处的切线方程;
(2)当x>0,f(2x)-4bf(x)>f(-2x)-4bf(-x)恒成立,求b的最大值;
(3)解关于x的不等式:$\left\{\begin{array}{l}f(x)≤f(1)\\ f(-x)≤f(1)\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$,其中常数ω>0.
(1)若y=f(x)在[-$\frac{π}{3}$,$\frac{3π}{4}$]上单调递增,求ω的取值范围;
(2)若ω<4,将函数y=f(x)图象向左平移$\frac{π}{3}$个单位,再向上平移1的单位,得到函数y=g(x)的图象,且过P($\frac{π}{6},1$),求g(x)的解析式;
(3)在(2)问下,若函数g(x)在区间[a,b](a、b∈R且a<b)满足:y=g(x)在[a,b]上至少含20个零点,在所以满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}满足a1=10,an+1=an+18n+10(n∈N*)记[x]表示不超过实数x的最大整数,则$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}共有20项,所有奇数项和为132,所有偶数项和为112,则等差数列的公差d=-2.

查看答案和解析>>

同步练习册答案