精英家教网 > 高中数学 > 题目详情
6.数列{an}满足a1=10,an+1=an+18n+10(n∈N*)记[x]表示不超过实数x的最大整数,则$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 由已知变形,利用累加法求得数列通项公式,然后代入$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])求得答案.

解答 解:由an+1=an+18n+10,得a1=10,
又a1=10,
∴a2-a1=18×1+10,
a3-a2=18×2+10,

an-an-1=18(n-1)+10,
累加得:an=a1+18[1+2+…+(n-1)]+10(n-1)=$10n+18×\frac{n(n-1)}{2}=9{n}^{2}+n$.
∴$\sqrt{a_n}$-[${\sqrt{a_n}}$]=$\sqrt{9{n}^{2}+n}-3n$=$\frac{9{n}^{2}+n-9{n}^{2}}{\sqrt{9{n}^{2}+n}+3n}=\frac{n}{\sqrt{9{n}^{2}+n}+3n}$=$\frac{1}{\sqrt{9+\frac{1}{n}}+3}$.
则$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=$\underset{lim}{n→∞}\frac{1}{\sqrt{9+\frac{1}{n}}+3}=\frac{1}{6}$.
故选:D.

点评 本题考查数列的极限,训练了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.棱长均为1的正三棱柱ABC-A1B1C1的外接球表面积为$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有210种以上(含210种)的不同选择,则餐厅至少还需准备7种不同的素菜.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知有向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1且$\overrightarrow{a}$,$\overrightarrow{b}$夹角为120°,若$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=3$\overrightarrow{b}$-$\overrightarrow{a}$,求$\overrightarrow{c}$,$\overrightarrow{d}$两向量夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=-$\frac{1}{x}$的单调区间表述正确的是(  )
A.在(-∞,1)∪(1,+∞)递减B.在(-∞,0)和(0,+∞,)递减
C.在(-∞,1)∪(1,+∞)递增D.在(-∞,0)和(0,+∞)递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=4,那么|$\overrightarrow{a}$-2$\overrightarrow{b}$|=4$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(sinωx+cosωx,sinωx),向量$\overrightarrow{b}$=(sinωx-cosωx,2$\sqrt{3}$ cosωx),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+1(x∈R)的图象关于直线x=$\frac{π}{3}$对称,其中常数ω∈(0,2).
(1)若x∈[0,$\frac{π}{2}$],求f(x)的值域;
(2)将函数f(x)的图象向左平移$\frac{π}{12}$个单位,再向下平移1个单位,得到函数g(x)的图象,用五点法作出函数g(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m取什么数,直线l与圆C恒交于两点;
(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若二次函数f(x)=x2-2ax+4在(1,+∞)内有两个零点,则实数a的取值范围为(2,$\frac{5}{2}$).

查看答案和解析>>

同步练习册答案