精英家教网 > 高中数学 > 题目详情
15.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m取什么数,直线l与圆C恒交于两点;
(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.

分析 (1)判断直线l是否过定点,可将(2m+1)x+(m+1)y-7m-4=0,m∈R转化为(x+y-4)+m(2x+y-7)=0,利用$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$,即可确定所过的定点A(3,1);再计算|AC|,与圆的半径R=$\sqrt{5}$比较,判断l与圆的位置关系;
(2)弦长最小时,l⊥AC,直线l被圆C截得的弦长最小,由kAC=-$\frac{1}{2}$,得直线l的斜率,从而由点斜式可求得m的值.

解答 (1)证明:由(2m+1)x+(m+1)y-7m-4=0,m∈R得:
(x+y-4)+m(2x+y-7)=0,
∵m∈R,
∴$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$得x=3,y=1,
故l恒过定点A(3,1);
又圆心C(1,2),
∴|AC|=$\sqrt{5}$<5(半径)
∴点A在圆C内,从而直线l恒与圆C相交.
(2)解:∵弦长的一半、该弦弦心距、圆的半径构成一个直角三角形,
∴当l⊥AC(此时该弦弦心距最大),直线l被圆C截得的弦长最小,
∴直线l的斜率为k=-$\frac{1}{{k}_{AC}}$=$\frac{1}{\frac{2-1}{1-3}}$=2
∵A(3,1)、圆心C(1,2),圆的半径为r=5
∴弦心距AC=$\sqrt{(3-1)^{2}+(1-2)^{2}}$=$\sqrt{5}$
∴最短弦长=2×$\sqrt{{r}^{2}-A{C}^{2}}$=2×$\sqrt{{5}^{2}-(\sqrt{5})^{2}}$=4$\sqrt{5}$
∵直线l:(2m+1)x+(m+1)y-7m-4=0
整理得:y=-$\frac{2m+1}{m+1}$x+$\frac{7m+4}{m+1}$
∴-$\frac{2m+1}{m+1}$=2
解得m=-$\frac{3}{4}$
∴直线l被圆C截得的线段的最短长度为4$\sqrt{5}$,此时m的值为-$\frac{3}{4}$

点评 本题考查直线与圆的位置关系及恒过定点的直线,难点在于(2)中“弦长最小时,l⊥AC”的理解与应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知正数a,b,c满足4a-2b+25c=0,则lga+lgc-2lgb的最大值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}满足a1=10,an+1=an+18n+10(n∈N*)记[x]表示不超过实数x的最大整数,则$\lim_{n→∞}$($\sqrt{a_n}$-[${\sqrt{a_n}}$])=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某篮球运动员在一次投篮训练中得分ξ的分布列如表所示,其中a,b,c成等差数列,且c=ab,则这名运动员投中3分的概率是(  )
ξ023
Pabc
A.$\frac{1}{4}$B.$\frac{1}{7}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直线L经过点A(-3,4),且在x轴上截距是在y轴截距的2倍,求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知锐角A是三角形ABC的一个内角,a,b,c是各内角所对的边,若sin2A-cos2A=$\frac{1}{2}$,则下列各式正确的是(  )
A.b+c≤2aB.a+c≤2bC.a+b≤2cD.a2≤bc

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}共有20项,所有奇数项和为132,所有偶数项和为112,则等差数列的公差d=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义域为R的偶函数,且f(2+x)=f(2-x),当x∈[0,2]时,f(x)=x2-2x,则f(-5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为13.
(1)求an及Sn
(2)令bn=$\frac{1}{{{a_n}^2-1}}$(n∈N*),求数列{bn}的前项和Tn

查看答案和解析>>

同步练习册答案