精英家教网 > 高中数学 > 题目详情
10.直线L经过点A(-3,4),且在x轴上截距是在y轴截距的2倍,求该直线的方程.

分析 当直线经过原点时,直线方程为:y=-$\frac{4}{3}$x.当直线不经过原点时,设直线方程为:$\frac{x}{2a}$+$\frac{y}{a}$=1,把点(-3,4)代入解得a即可得出.

解答 解:当直线经过原点时,直线方程为:y=-$\frac{4}{3}$x.
当直线不经过原点时,设直线方程为:$\frac{x}{2a}$+$\frac{y}{a}$=1,
把点A(-3,4)代入,得
$\frac{-3}{2a}$+$\frac{4}{a}$=1,
解得a=$\frac{5}{2}$.
∴直线方程为2x-y=5.
综上可得直线方程为:3y+4x=0,或2x-y-5=0.

点评 本题考查了直线的截距式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.与400°终边相同的最小正角是40°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=-$\frac{1}{x}$的单调区间表述正确的是(  )
A.在(-∞,1)∪(1,+∞)递减B.在(-∞,0)和(0,+∞,)递减
C.在(-∞,1)∪(1,+∞)递增D.在(-∞,0)和(0,+∞)递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(sinωx+cosωx,sinωx),向量$\overrightarrow{b}$=(sinωx-cosωx,2$\sqrt{3}$ cosωx),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+1(x∈R)的图象关于直线x=$\frac{π}{3}$对称,其中常数ω∈(0,2).
(1)若x∈[0,$\frac{π}{2}$],求f(x)的值域;
(2)将函数f(x)的图象向左平移$\frac{π}{12}$个单位,再向下平移1个单位,得到函数g(x)的图象,用五点法作出函数g(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=cos2x-2sinxcosx-sin2x,
(1)求f(x)的周期和单调增区间;
(2)若f(x)图象向左平移$\frac{π}{8}$得到函数g(x)的图象,求g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)证明:不论m取什么数,直线l与圆C恒交于两点;
(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知三棱锥S-ABC外接球的表面积为32π,∠ABC=90°,三棱锥S-ABC的三视图如图所示,则其侧视图的面积的最大值为(  )
A.4B.$4\sqrt{2}$C.8D.$4\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设数列{an}的前n项和为Sn,已知2Sn=3n+3.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an•bn=log3an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,an=$\frac{1}{3}$(an-1+2an-2),(n≥3),其中a1=1,a2=2,求通项.

查看答案和解析>>

同步练习册答案