精英家教网 > 高中数学 > 题目详情
20.已知数列{an}中,an=$\frac{1}{3}$(an-1+2an-2),(n≥3),其中a1=1,a2=2,求通项.

分析 通过对an=$\frac{1}{3}$(an-1+2an-2)(n≥3)变形可构造首项为1、公比为-$\frac{2}{3}$的等比数列{an-1-an-2},进而利用累加法求和即得结论.

解答 解:∵an=$\frac{1}{3}$(an-1+2an-2)(n≥3),
∴an-an-1=-$\frac{2}{3}$(an-1-an-2),
又∵a1=1,a2=2,
∴数列{an-1-an-2}是首项为1、公比为-$\frac{2}{3}$的等比数列,
∴an-an-1=$(-\frac{2}{3})^{n-2}$,
∴当n≥3时,an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a3-a2)+(a2-a1)+a1
=$(-\frac{2}{3})^{n-2}$+$(-\frac{2}{3})^{n-3}$+…+$(-\frac{2}{3})^{1}$+$(-\frac{2}{3})^{0}$+1
=$\frac{1-(-\frac{2}{3})^{n-1}}{1-(-\frac{2}{3})}$+1
=$\frac{8}{5}$-$\frac{3}{5}$$(-\frac{2}{3})^{n-1}$,
又∵a1=1,a2=2满足上式,
∴通项公式an=$\frac{8}{5}$-$\frac{3}{5}$$(-\frac{2}{3})^{n-1}$.

点评 本题考查数列的通项,考查累加法求和,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.直线L经过点A(-3,4),且在x轴上截距是在y轴截距的2倍,求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=n2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求$\frac{1}{\sqrt{{a}_{1}}+\sqrt{{a}_{2}}}$+$\frac{1}{\sqrt{{a}_{2}}+\sqrt{{a}_{3}}}$+…+$\frac{1}{\sqrt{{a}_{2016}}+\sqrt{{a}_{2017}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知⊙C:x2+y2-2x-2y=0,则点P(3,1)在(  )
A.圆内B.圆上C.圆外D.不知道

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{xn}的首项x1=3,通项xn=2np+nq,(n∈N,p,q为常数),且x1,x4,x5成等差数列,则p之值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为13.
(1)求an及Sn
(2)令bn=$\frac{1}{{{a_n}^2-1}}$(n∈N*),求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}中,a1=1,公差d>0,且a2,a5,a14分别是等比数列{bn}的第二项、第三项、第四项.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.非零向量$\overrightarrow a,\overrightarrow b满足|\overrightarrow a|=|\overrightarrow b|=|\overrightarrow a+\overrightarrow b|$,则$\overrightarrow a,\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数f(x)=ln(x2-2x-3)的定义域及单调区间.

查看答案和解析>>

同步练习册答案