精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$-\sqrt{5}$.

分析 根据条件容易求出$\overrightarrow{a}•\overrightarrow{b}$和$|\overrightarrow{b}|$的值,而可以得到$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$,从而得出该投影的值.

解答 解:$\overrightarrow{a}•\overrightarrow{b}=-3-2=-5$,$|\overrightarrow{b}|=\sqrt{5}$;
∴$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为:$|\overrightarrow{a}|cos<\overrightarrow{a},\overrightarrow{b}>=|\overrightarrow{a}|•\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}=\frac{-5}{\sqrt{5}}=-\sqrt{5}$.
故答案为:$-\sqrt{5}$.

点评 考查向量数量积的坐标运算,能根据向量坐标求向量长度,以及投影的定义及计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.现有下列命题:
①?x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则$\frac{c}{a}$>$\frac{c}{b}$”的逆否命题是真命题;
④若命题p:?x∈R,x2+1≥1,命题q:?x0∈R,x02-x0-1≤0,则命题p∧¬q是真命题.
则其中真命题为(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l过直线3x+4y-5=0和2x+y=0的交点;
(1)当l与直线3x-2y-1=0垂直时,求l;
(2)当l与直线3x-2y-1=0平行时,求l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-4x+(2-a)lnx,(a∈R)
(1)当a=8时,求:
①f(x)的单调增区间;
②曲线y=f(x)在点(1,-3)处的切线方程.
(2)求函数f(x)在区间[e,e2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x2+y2=$\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P,若$\overrightarrow{OP}$=2$\overrightarrow{OE}$-$\overrightarrow{OF}$,则双曲线的离心率是$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列命题中,正确的序号是  ①
①函数f(x)=$\frac{2x+1}{x-2}$的对称中心为(2,2).
②向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,则$\overrightarrow a$⊥$\overrightarrow b$
③将函数y=2sin(2x+$\frac{π}{4}$)向右平移$\frac{3}{8}$π个单位,将图象上每一点横坐标缩短为原来的$\frac{1}{2}$倍,所得函数为y=2cos4x
④定义运算$|\begin{array}{l}{a_1}\;\;\;\;{a_2}\\{b_1}\;\;\;\;{b_2}\end{array}|$=a1b2-a2b1,则函数f(x)=$|\begin{array}{l}{x^2}+3x\;\;\;\;\;1\\ x\;\;\;\;\;\;\;\;\;\;\;\frac{1}{3}x\end{array}|$的图象在(1,$\frac{1}{3}$)处的切线方程为6x-3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列五个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f'(x0)=0,则函数y=f(x)在x=x0处取得极值;
③命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x>0”;
④“1<x<2”是“2x>1成立”的充分不必要条件
⑤若函数y=f(x+2)是偶函数,则函数y=f(x)的图象关于直线x=2对称;
其中正确命题的序号是①④⑤(请填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个命题中的真命题是(  )
A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示
B.经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示
C.不经过原点的直线都可以用方程$\frac{x}{a}+\frac{y}{b}=1$表示
D.经过定点A(0,b)的直线都可以用方程y=kx+b表示

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数$f(x)=\left\{\begin{array}{l}1-{x^2},x<0\\{x^2}-x-1,x>0\end{array}\right.$,则f(-1)+f(2)的值为(  )
A.5B.-1C.1D.0

查看答案和解析>>

同步练习册答案