分析 (1)①先求出函数的导数,得出单调增区间;
②求出切线斜率,即可求出曲线y=f(x)在点(1,-3)处的切线方程
(2)先求出函数的导数,分类讨论,确定函数的单调性,即可求函数f(x)在区间[e,e2]上的最小值.
解答 解:(1)①依题意得,当a=8时,f(x)=x2-4x-6lnx,
∴f′(x)=$\frac{2(x+1)(x-3)}{x}$,
由f′(x)>0,得(x+1)(x-3)>0,
解得x>3或x<-1.注意到x>0,
∴函数f(x)的单调递增区间是(3,+∞).
②k=f'(1)=-8,
∴曲线y=f(x)在点(1,-3)处的切线方程是8x+y-5=0.
(2)当x∈[e,e2]时,f(x)=x2-4x+(2-a)lnx,
所以f′(x)=$\frac{2{x}^{2}-4x+2-a}{x}$,
设g(x)=2x2-4x+2-a.
①当a≤0时,有△=16-4×2(2-a)=8a≤0
所以f′(x)≥0,f(x)在[e,e2]上单调递增.
所以f(x)min=f(e)=e2-4e+2-a(8分)
②当a>0时,△=16-4×2(2-a)=8a>0,
令f′(x)>0,即2x2-4x+2-a>0,解得x>1+$\frac{\sqrt{2}a}{2}$或x<1-$\frac{\sqrt{2}a}{2}$(舍);
令f′(x)<0,即2x2-4x+2-a<0,解得1-$\frac{\sqrt{2}a}{2}$<x<1+$\frac{\sqrt{2}a}{2}$.
1°若1+$\frac{\sqrt{2}a}{2}$≥e2,即a≥2(e2-1)2时,f(x)在区间[e,e2]单调递减,
所以f(x)min=f(e2)=e4-4e2+4-2a.
2°若e<1+$\frac{\sqrt{2}a}{2}$<e2,即2(e-1)2<a<2(e2-1)2时,f(x)在区间[e,1+$\frac{\sqrt{2}a}{2}$]上单调递减,
在区间[1+$\frac{\sqrt{2}a}{2}$,e2]上单调递增,所以f(x)min=f(1+$\frac{\sqrt{2}a}{2}$)=$\frac{a}{2}$-$\sqrt{2}$a-3+(2-a)ln(1+$\frac{\sqrt{2}a}{2}$).
3°若1+$\frac{\sqrt{2}a}{2}$≤e,即0<a≤2(e-1)2时,f(x)在区间[e,e2]单调递增,
所以f(x)min=f(e)=e2-4e+2-a.(14分)
综上所述,
当a≥2(e2-1)2时,f(x)min=e4-4e2+4-2a;
当2(e-1)2<a<2(e2-1)2时,f(x)min=$\frac{a}{2}$-$\sqrt{2}$a-3+(2-a)ln(1+$\frac{\sqrt{2}a}{2}$);
当a≤2(e-1)2时,f(x)min=e2-4e+2-a.(16分)
点评 本题考察了函数的单调性,导数的应用,求函数的极值问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-1,0) | C. | (-2,+∞) | D. | (-2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A?B | B. | A?B | C. | A=B | D. | A与B无公共元素 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com