精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=x2-4x+(2-a)lnx,(a∈R)
(1)当a=8时,求:
①f(x)的单调增区间;
②曲线y=f(x)在点(1,-3)处的切线方程.
(2)求函数f(x)在区间[e,e2]上的最小值.

分析 (1)①先求出函数的导数,得出单调增区间;
②求出切线斜率,即可求出曲线y=f(x)在点(1,-3)处的切线方程
(2)先求出函数的导数,分类讨论,确定函数的单调性,即可求函数f(x)在区间[e,e2]上的最小值.

解答 解:(1)①依题意得,当a=8时,f(x)=x2-4x-6lnx,
∴f′(x)=$\frac{2(x+1)(x-3)}{x}$,
由f′(x)>0,得(x+1)(x-3)>0,
解得x>3或x<-1.注意到x>0,
∴函数f(x)的单调递增区间是(3,+∞).
②k=f'(1)=-8,
∴曲线y=f(x)在点(1,-3)处的切线方程是8x+y-5=0.
(2)当x∈[e,e2]时,f(x)=x2-4x+(2-a)lnx,
所以f′(x)=$\frac{2{x}^{2}-4x+2-a}{x}$,
设g(x)=2x2-4x+2-a.
①当a≤0时,有△=16-4×2(2-a)=8a≤0
所以f′(x)≥0,f(x)在[e,e2]上单调递增.
所以f(x)min=f(e)=e2-4e+2-a(8分)
②当a>0时,△=16-4×2(2-a)=8a>0,
令f′(x)>0,即2x2-4x+2-a>0,解得x>1+$\frac{\sqrt{2}a}{2}$或x<1-$\frac{\sqrt{2}a}{2}$(舍);
令f′(x)<0,即2x2-4x+2-a<0,解得1-$\frac{\sqrt{2}a}{2}$<x<1+$\frac{\sqrt{2}a}{2}$.
1°若1+$\frac{\sqrt{2}a}{2}$≥e2,即a≥2(e2-1)2时,f(x)在区间[e,e2]单调递减,
所以f(x)min=f(e2)=e4-4e2+4-2a.
2°若e<1+$\frac{\sqrt{2}a}{2}$<e2,即2(e-1)2<a<2(e2-1)2时,f(x)在区间[e,1+$\frac{\sqrt{2}a}{2}$]上单调递减,
在区间[1+$\frac{\sqrt{2}a}{2}$,e2]上单调递增,所以f(x)min=f(1+$\frac{\sqrt{2}a}{2}$)=$\frac{a}{2}$-$\sqrt{2}$a-3+(2-a)ln(1+$\frac{\sqrt{2}a}{2}$).
3°若1+$\frac{\sqrt{2}a}{2}$≤e,即0<a≤2(e-1)2时,f(x)在区间[e,e2]单调递增,
所以f(x)min=f(e)=e2-4e+2-a.(14分)
综上所述,
当a≥2(e2-1)2时,f(x)min=e4-4e2+4-2a;
当2(e-1)2<a<2(e2-1)2时,f(x)min=$\frac{a}{2}$-$\sqrt{2}$a-3+(2-a)ln(1+$\frac{\sqrt{2}a}{2}$);
当a≤2(e-1)2时,f(x)min=e2-4e+2-a.(16分)

点评 本题考察了函数的单调性,导数的应用,求函数的极值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知一个四棱锥的三视图如图所示,则此四棱锥的体积为(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2sin2(x+$\frac{π}{4}$)-$\sqrt{3}$cos2x,x∈[$\frac{π}{4}$,$\frac{π}{2}$].
(Ⅰ)求f(x)的值域;
(Ⅱ)若不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知g(x)=(ax-$\frac{b}{x}$-2a)ex(a>0),若存在x0∈(1,+∞),使得g(x0)+g'(x0)=0,则$\frac{b}{a}$的取值范围是(  )
A.(-1,+∞)B.(-1,0)C.(-2,+∞)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x=$\frac{k}{3}$,k∈Z},B={x|x=$\frac{k}{6}$,k∈Z},则(  )
A.A?BB.A?BC.A=BD.A与B无公共元素

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:|4-x|≤6,q:x2-2x+1≤0(m>0),若非p是非q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$-\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“?x∈(-∞,0),有x2>0”的否定是?x∈(-∞,0),x2≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+$\frac{4}{x}$
(1)判断f(x)的奇偶性;
(2)证明f(x)在区间(2,+∞)上是增函数.

查看答案和解析>>

同步练习册答案