精英家教网 > 高中数学 > 题目详情
16.已知一个四棱锥的三视图如图所示,则此四棱锥的体积为(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,
底面面积S=2×2-$\frac{1}{2}$×1×2-$\frac{1}{2}$×1×1=$\frac{5}{2}$,
高h=2,
故体积V=$\frac{1}{3}Sh$=$\frac{5}{3}$,
故选:C.

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-1|+|x+1|.
(Ⅰ)求不等式f(x)≥2的解集;
(Ⅱ)若关于x的不等式f(x)<a的解集为∅,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.长为2$\sqrt{2}$线段EF的两上端点E、F分别在坐标轴x轴、y轴上滑动,设线段中点为M,线段EF在滑动过程中,点M形成轨迹为C.
(1)求C的方程;
(2)过点P(0,1)直线l与轨迹C交于A、B两点.
①写出$\frac{{|{AP}|}}{{|{PB}|}}$的取值范围,可简要说明理由;
②坐标平面内是否存在异于点P的定点Q,当l转动时,总有$\frac{{|{QA}|}}{{|{QB}|}}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,请求出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行下边的算法流程图,则输出的i=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在抛物线y2=x上有两动点A,B,且|AB|=4,则线段AB的中点M到y轴的距离的最小值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知偶函数f(x)在[0,+∞)上满足f(x+1)-f(-x)<0,若f(lgx)>f(2),则x的取值范围是(  )
A.$(0,\frac{1}{100})$B.$(\frac{1}{100},1)$C.$(\frac{1}{100},100)$D.(0,1)∪(100,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.现有下列命题:
①?x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则$\frac{c}{a}$>$\frac{c}{b}$”的逆否命题是真命题;
④若命题p:?x∈R,x2+1≥1,命题q:?x0∈R,x02-x0-1≤0,则命题p∧¬q是真命题.
则其中真命题为(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集为R,函数f(x)=$\frac{1}{\sqrt{{x}^{2}-1}}$的定义域为集合M,则∁RM为(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-4x+(2-a)lnx,(a∈R)
(1)当a=8时,求:
①f(x)的单调增区间;
②曲线y=f(x)在点(1,-3)处的切线方程.
(2)求函数f(x)在区间[e,e2]上的最小值.

查看答案和解析>>

同步练习册答案