精英家教网 > 高中数学 > 题目详情

【题目】定义:数列对一切正整数均满足,称数列凸数列,以下关于凸数列的说法:

等差数列一定是凸数列;

首项,公比的等比数列一定是凸数列;

若数列为凸数列,则数列是单调递增数列;

若数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列

其中正确说法的序号是_____________

【答案】②③④

【解析】

试题分析:中,由等差数列的性质可得,不满足,所以数列不是凸数列中,因为数列的首项,公比,所以,所以,所以数列一定是凸数列;因为数列为凸数列,所以数列对一切正整数均满足,所以,所以数列是单调递增数列是正确的;中,数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列是正确的综上所述,②③④正确

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列的前三项分别为λ6n项和为SnSk=165.

(1)λk的值;

(2)bn且数列的前n项和Tn证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ求x+y≥0的概率;

(2)若x,yR求x+y≥0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时, 求曲线的极值;

(2)求函数的单调区间;

(3)若对任意时, 恒有成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若是在定义域内的增函数,求的取值范围;

(2)若函数(其中的导函数)存在三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:

137 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为

A.0.40 B.0.30

C.0.35 D.0.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为相交于两点

1时,判断直线与曲线的位置关系,并说明理由;

2变化时,求弦的中点的普通方程,并说明它是什么曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围.

2)设函数,且,求证: 时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线轴交于点,直线轴交于点.

(1)求圆的方程

(2)求证: 为定值.

查看答案和解析>>

同步练习册答案