【题目】定义:数列对一切正整数均满足,称数列为“凸数列”,以下关于“凸数列”的说法:
①等差数列一定是凸数列;
②首项,公比且的等比数列一定是凸数列;
③若数列为凸数列,则数列是单调递增数列;
④若数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列.
其中正确说法的序号是_____________.
科目:高中数学 来源: 题型:
【题目】已知等差数列的前三项分别为λ,6,3λ,前n项和为Sn,且Sk=165.
(1)求λ及k的值;
(2)设bn=,且数列的前n项和Tn,证明:≤Tn<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.0.40 B.0.30
C.0.35 D.0.25
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且与相交于两点.
(1)当时,判断直线与曲线的位置关系,并说明理由;
(2)当变化时,求弦的中点的普通方程,并说明它是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.点为圆上异于的任意一点,直线与轴交于点,直线与轴交于点.
(1)求圆的方程;
(2)求证: 为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com