【题目】已知函数.
(1)若是在定义域内的增函数,求的取值范围;
(2)若函数(其中为的导函数)存在三个零点,求的取值范围.
【答案】(1)(2)
【解析】
试题分析:(1)求出函数f(x)的定义域为R,导函数f'(x)=2x-1-2ce-2x,利用f'(x)≥0得对于一切实数都成立,构造函数,利用导数求解函数的最小值,即可得到c的取值范围;(2)由(1)知f'(x)=2x-1-2ce-2x,通过F(x)=0得,整理得,构造函数
,通过导数求出导数的极值点,判断函数的单调性,求解函数的极小值即可
试题解析:(1)因为,
所以函数的定义域为,且,
由得即对于一切实数都成立.………2分
再令,则,令得.
而当时,当时,
所以当时取得极小值也是最小值,即.
所以的取值范围是.………………6分
(2)由(1)知,所以由得
,整理得.………………8分
令,则,
令,解得或.
列表得:
由表可知当时,取得极大值;
当时,取得极小值.………………12分
又当时,,,所以此时.
因此当时,;当时,;当时,;因此满足条件的取值范围是.………………16分
科目:高中数学 来源: 题型:
【题目】语文成绩服从正态分布,数学成绩的频率分布直方图如下:
(I)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(II)如果语文和数学两科都特别优秀的共有6人,从(I)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望.
(附参考公式)若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,且x<0时,f(x)=1+2x.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图像;
(3)写出函数f(x)的单调区间及值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,记二次函数()与两坐标轴有三个交点,其中与x轴的交点为A,B.经过三个交点的圆记为.
(1)求圆的方程;
(2)设P为圆上一点,若直线PA,PB分别交直线于点M,N,则以MN为直径的圆是否经过线段AB上一定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:数列对一切正整数均满足,称数列为“凸数列”,以下关于“凸数列”的说法:
①等差数列一定是凸数列;
②首项,公比且的等比数列一定是凸数列;
③若数列为凸数列,则数列是单调递增数列;
④若数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列.
其中正确说法的序号是_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,假命题是_________ (填序号).
①经过定点P(x0,y0)的直线不一定都可以用方程y-y0=k(x-x0)表示;
②经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③与两条坐标轴都相交的直线不一定可以用方程表示;
④经过点Q(0,b)的直线都可以表示为y=kx+b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥中,平面,∥,∥,∥,, ,,是等腰三角形.
(1)求证:平面平面;
(2)求侧棱上是否存在点,使得与平面所成角大小为,若存在,求出点位置,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com