精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数时取得极值,求实数的值;
(2)若对任意恒成立,求实数的取值范围.

(1);(2).

解析试题分析:(1)先求导函数,进而根据题中条件得出,从可即可求解出的值,注意,根据函数在某点取得极值去求参数的值时,往往必须进行检验,也就是将所求得的的值代回原函数,看看是否真的在该点处取得极值,如果不是必须舍去,如果是则保留;(2)先将对任意恒成立等价转化为恒成立,进而求出导函数并进行因式分解得到,进而分两类分别确定的单调性,随之确定,然后分别求解不等式,解出的取值范围,最后取这两种情况下的的取值范围的并集即可.
(1),依题意有:,即
解得:
检验:当时,
此时:函数上单调递减,在上单调递增,满足在时取得极值
综上:                               5分
(2)依题意:对任意恒成立等价转化为恒成立 6分
因为
得:                      8分
时,函数恒成立,则单调递增,于是,解得:,此时:            10分
②当时,函数单调递减,在单调递增,于是,不合题意,此时:
综上所述:实数的取值范围是        12分.
说明:本题采用参数分离法或者先用必要条件缩小参数范围也可以.
考点:1.函数的极值与导数;2.函数的最值与导数;3.分类讨论的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的极值;
(2)若,证明:在区间内存在唯一的零点;
(3)在(2)的条件下,设在区间内的零点,判断数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用长为18 m的钢条围成一个长方体容器的框架,如果所制的容器的长与宽之比为2∶1,那么高为多少时容器的容积最大?并求出它的最大容积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中
(1)若的图像在交点(2,)处的切线互相垂直,
的值;
(2)若是函数的一个极值点,和1是的两个零点,
∈(,求
(3)当时,若的两个极值点,当||>1时,
求证:||

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若当时,函数的最大值为,求的值;
(2)设为函数的导函数),若函数上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

同步练习册答案