分析 (1)利用向量的坐标运算以及模的求法求解即可.
(2)化简向量,利用数量积为0,求解k即可.
解答 解:(1)向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-3,2).
|$\overrightarrow{a}$-$\overrightarrow{b}$|=|(6,2)|=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$;
(2)向量k$\overrightarrow{a}$+$\overrightarrow{b}$=(3k-3,4k+2)
$\overrightarrow{a}$-2$\overrightarrow{b}$=(9,0)
向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,
可得(k$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)=0,即:9(3k-3)=0,解得k=1.
点评 本题考查向量的数量积的运算,向量的模的求法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com