分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用正弦函数的定义域和值域,求得函数f(x)的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值.
(3)利用两角差的正弦公式,求得sin2α=sin[(2α+$\frac{π}{4}$)-$\frac{π}{4}$]的值.
解答 解:(1)∵函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高点D的坐标为($\frac{π}{8}$,2),可得A=2.
∵由最高点D运动到相邻最低点时,函数图形与x轴的交点的坐标为($\frac{3π}{8}$,0),可得$\frac{T}{4}$=$\frac{3π}{8}$-$\frac{π}{8}$=$\frac{1}{4}$•$\frac{2π}{ω}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{8}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{4}$,∴f(x)=2sin(2x+$\frac{π}{4}$).
(2)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,2x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],故f(x)的最大值为2,此时,2x+$\frac{π}{4}$=$\frac{π}{2}$,即 x=$\frac{π}{8}$.
f(x)的最小值为-$\sqrt{2}$,此时,2x+$\frac{π}{4}$=-$\frac{π}{4}$,即 x=-$\frac{π}{4}$.
(3)若f(α)=2sin(2α+$\frac{π}{4}$)=$\frac{8}{5}$,则 sin(2α+$\frac{π}{4}$)=$\frac{4}{5}$,∵α∈(0,$\frac{π}{8}$),∴cos(2α+$\frac{π}{4}$)=$\frac{3}{5}$,
∴sin2α=sin[(2α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(2α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(2α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{4}{5}$•$\frac{\sqrt{2}}{2}$-$\frac{3}{5}$•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{10}$.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的定义域和值域,两角差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.5 | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com