精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,设钝角α的终边与圆O:x2+y2=4交于点P(x1,y1),点P沿圆顺时针移动$\frac{2π}{3}$个单位弧长后到达点Q(x2,y2),则y1+y2的取值范围是(3,2$\sqrt{3}$]; 若x2=$\frac{1}{2}$,则x1=$\frac{1-3\sqrt{5}}{4}$.

分析 根据三角函数的定义求出函数y1+y2,再根据两角和与差的余弦公式,二倍角公式,化简,根据余弦函数的性质即可求出.

解答 解:圆的半径r=2,点P沿圆顺时针移动$\frac{2π}{3}$个单位弧长后到达点Q,
则移动的弧度为$\frac{\frac{2π}{3}}{2}$=$\frac{π}{3}$,
由三角函数定义知,x1=2cosα,y1=2sinα,$\frac{π}{2}$<α<π,
x2=2cos(α-$\frac{π}{3}$),
y2=2sin(α-$\frac{π}{3}$),
则y1+y2=2sinα+2sin(α-$\frac{π}{3}$)=2sinα+2(sinαcos$\frac{π}{3}$-cosαsin$\frac{π}{3}$)
=2sinα+sinα-$\sqrt{3}$cosα
=3sinα-$\sqrt{3}$cosα
=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinα-$\frac{1}{2}$cosα)
=2$\sqrt{3}$sin(α-$\frac{π}{6}$),
∵$\frac{π}{2}$<α<π,
∴$\frac{π}{3}$<α-$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{\sqrt{3}}{2}$<sin(α-$\frac{π}{6}$)≤1,
3<2$\sqrt{3}$sin(α-$\frac{π}{6}$)≤2$\sqrt{3}$,
即y1+y2的取值范围是(3,2$\sqrt{3}$],
∵x2=2cos(α-$\frac{π}{3}$)=$\frac{1}{2}$,
∴cos(α-$\frac{π}{3}$)=$\frac{1}{4}$,
∵$\frac{π}{2}$<α<π,
∴$\frac{π}{6}$<α-$\frac{π}{3}$<$\frac{2π}{3}$,
∵cos(α-$\frac{π}{3}$)=$\frac{1}{4}$>0,
∴$\frac{π}{6}$<α-$\frac{π}{3}$<$\frac{π}{2}$,
则sin(α-$\frac{π}{3}$)=$\sqrt{1-(\frac{1}{4})^{2}}$=$\sqrt{\frac{15}{16}}$=$\frac{\sqrt{15}}{4}$,
则x1=2cosα=2cos(α-$\frac{π}{3}$+$\frac{π}{3}$)=2[cos(α-$\frac{π}{3}$)cos$\frac{π}{3}$-sin(α-$\frac{π}{3}$)sin$\frac{π}{3}$]
=2($\frac{1}{2}×$$\frac{1}{4}$-$\frac{\sqrt{15}}{4}$×$\frac{\sqrt{3}}{2}$)=$\frac{1-3\sqrt{5}}{4}$,
故答案为:(3,2$\sqrt{3}$],$\frac{1-3\sqrt{5}}{4}$

点评 本题主要考查三角函数的定义,两角和与差的余弦公式,余弦函数的性质,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$)的最高点D的坐标为($\frac{π}{8}$,2),由最高点D运动到相邻最低点时,函数图形与x轴的交点的坐标为($\frac{3π}{8}$,0);
(1)求函数f(x)的解析式.
(2)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求函数f(x)的最大值和最小值以及分别取得最大值和最小值时相应的自变量x的值.
(3)若f(α)=$\frac{8}{5}$,α∈(0,$\frac{π}{8}$),求sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若角α的终边过点(2sin30°,2cos30°),则sinα的值等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,直线y=x被椭圆C截得的线段长为$\frac{{8\sqrt{3}}}{3}$.
( I)求椭圆C的方程.
(Ⅱ)直线l是圆O:x2+y2=r2的任意一条切线,l与椭圆C交于A、B两点,若以AB为直径的圆恒过原点,求圆O的方程,并求出|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}\right.$被称为狄利克雷函数,则关于函数f(x)有如下四个命题:
①f(f(x))=0;                  
②函数f(x)是偶函数;
③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中正确命题的序号有②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sinx-cosx的值域为 (  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.($\sqrt{2}$,$\sqrt{2}$)C.[-$\sqrt{2}$,2)D.(-$\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={1,2,3},B={2,3,x},A∪B={1,2,3,4},则x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z1=2+i,z2=1-2i,z=$\frac{{z}_{1}}{{z}_{2}}$,则|z|=(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点O是△ABC所在平面内一点,且点O不在△ABC三边所在直线上,设点P满足$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$+λ3$\overrightarrow{OC}$(其中λ1∈R,i=1,2,3),则下列叙述中正确的是(  )
①当λ1=1且λ23=0时,点P与点A重合
②当λ12=1且λ3=0时,点P在直线AB上
③当λ123=1且λ1>0(其中i=1,2,3)时,点P在△ABC内.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案