精英家教网 > 高中数学 > 题目详情
15.已知点O是△ABC所在平面内一点,且点O不在△ABC三边所在直线上,设点P满足$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$+λ3$\overrightarrow{OC}$(其中λ1∈R,i=1,2,3),则下列叙述中正确的是(  )
①当λ1=1且λ23=0时,点P与点A重合
②当λ12=1且λ3=0时,点P在直线AB上
③当λ123=1且λ1>0(其中i=1,2,3)时,点P在△ABC内.
A.0B.1C.2D.3

分析 根据向量的几何意义,向量的数乘运算,三点共线的充要条件便可判断①②叙述正确,再根据向量减法的几何意义即可由③的条件得到$\overrightarrow{CP}={λ}_{1}\overrightarrow{CA}+{λ}_{2}\overrightarrow{CB}$,而根据条件知0<λ12<1,并且存在k>1,使得kλ1+kλ2=1,并且kλ1,kλ2∈(0,1),$k\overrightarrow{CP}=k{λ}_{1}\overrightarrow{CA}+k{λ}_{2}\overrightarrow{CB}$,这样便可得出点P在△ABC内,从而判断叙述③正确,这样即可得出正确的选项.

解答 解:①λ1=1,λ23=0时,$\overrightarrow{OP}=\overrightarrow{OA}$$+0\overrightarrow{OB}+0\overrightarrow{OC}$=$\overrightarrow{OA}$;
∴点P和A重合,该叙述正确;
②λ12=1,λ3=0时,$\overrightarrow{OP}={λ}_{1}\overrightarrow{OA}+{λ}_{2}\overrightarrow{OB}$;
∴P,A,B三点共线;
即点P在直线AB上,该叙述正确;
③λ123=1时,λ3=1-λ12
∴$\overrightarrow{OP}={λ}_{1}\overrightarrow{OA}+{λ}_{2}\overrightarrow{OB}+(1-{λ}_{1}-{λ}_{2})$$\overrightarrow{OC}$
=${λ}_{1}(\overrightarrow{OA}-\overrightarrow{OC})+{λ}_{2}(\overrightarrow{OB}-\overrightarrow{OC})+\overrightarrow{OC}$
=${λ}_{1}\overrightarrow{CA}+{λ}_{2}\overrightarrow{CB}+\overrightarrow{OC}$;
∴$\overrightarrow{CP}={λ}_{1}\overrightarrow{CA}+{λ}_{2}\overrightarrow{CB}$;
∵0<λ12<1;
∴存在k>1,使k(λ12)=1;
如图,设$\overrightarrow{CD}=k\overrightarrow{CP}=k{λ}_{1}\overrightarrow{CA}+k{λ}_{2}\overrightarrow{CB}$:

∵kλ1+kλ2=1,且kλ1,kλ2∈(0,1);
∴D在边AB上,不包括A,B点;
∴P在线段CD上,且不包括C,D两点;
∴点P在△ABC内,即该叙述正确;
∴叙述正确个数为3.
故选D.

点评 考查向量、向量加法、减法及向量数乘的几何意义,以及向量的数乘运算,三点A,B,C共线的充要条件:$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,且x+y=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,设钝角α的终边与圆O:x2+y2=4交于点P(x1,y1),点P沿圆顺时针移动$\frac{2π}{3}$个单位弧长后到达点Q(x2,y2),则y1+y2的取值范围是(3,2$\sqrt{3}$]; 若x2=$\frac{1}{2}$,则x1=$\frac{1-3\sqrt{5}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=($\sqrt{1+x}$+$\sqrt{1-x}$+2)($\sqrt{1-{x}^{2}}$+1)的值域是(  )
A.[2+$\sqrt{2}$,8]B.[2+$\sqrt{2}$,+∞)C.[2,+∞)D.[2+$\sqrt{2}$,4$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.A、B是两个集合,A={y|y=x2-2},B={-3,1,y},其中y∈A,则y的取值集合是{y|y≥-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{m}$=(sinθ,-1),$\overrightarrow{n}$=($\sqrt{3}$,cosθ),$\overrightarrow{m}$$•\overrightarrow{n}$=1,其中θ∈(0,$\frac{π}{2}$).设函数f(x)=sin2x+acosx-acosθ-$\frac{3}{2}$.
(1)求角θ的大小;
(2)当a=1时,求函数f(x)在x∈[$\frac{π}{3}$,$\frac{7π}{6}$]时的值域;
(3)当a=0时,求函数g(x)=f(x)+$\frac{7}{6}$在区间[0,$\frac{13π}{6}$]上所有零点的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求与直线2x-y+10=0平行且在y轴、x轴上截距之和为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合A={1,0,x},B={|x|,y,lg(xy)},且A=B,则x,y的值分别为-1,-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{3}a{x^3}+{x^2}(a>0)$.
(Ⅰ)求函数y=f(x)的极值;
(Ⅱ)若存在实数x0∈(-1,0),且${x_0}≠-\frac{1}{2}$,使得$f({x_0})=f(-\frac{1}{2})$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用秦九韶算法计算当x=3时,多项式f(x)=3x9+3x6+5x4+x3+7x2+3x+1的值时,求得v5的值是(  )
A.84B.252C.761D.2284

查看答案和解析>>

同步练习册答案