精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)的定义域为(0,+∞),值域为R,对任意正数x,y,都有f(xy)=f(x)+f(y),当x>1时f(x)<0且f(3)=-1.
(1)求f(1)、f(9)、f($\frac{1}{9}$)的值.
(2)如果存在正数k,使不等式f(kx)+f(2-x)<2有解,求正数k的取值范围.

分析 (1)对于任意的x,y∈(0,+∞),f(x•y)=f(x)+f(y),令x=y=1,x=y=3,即可求得f(1)、f($\frac{1}{9}$)的值;
(2)当x>1时,f(x)<0,确定函数单调性,根据函数的单调性把f(kx)+f(2-x)根据条件转化为f[kx(2-x)],根据函数的单调性把函数值不等式转化为自变量不等式有解,分离参数转化我求函数的最值问题.

解答 解:(1)令x=y=1易得f(1)=0.
f(9)=f(3)+f(3)=-1-1=-2
f(9)+f($\frac{1}{9}$)=f(1)=0,得f($\frac{1}{9}$)=2.
(2)设0<x1<x2,由条件(1)可得f(x2)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$),
因$\frac{{x}_{2}}{{x}_{1}}$>1,所以知f($\frac{{x}_{2}}{{x}_{1}}$)<0,
所以f(x2)<f(x1),
即f(x)在R+上是递减的函数.
不等式f(kx)+f(2-x)<2可化为kx(2-x)>$\frac{1}{9}$且0<x<2,
得k>$\frac{1}{9x(2-x)}$,此不等式有解,等价于k>[$\frac{1}{9x(2-x)}$]min
在0<x<2的范围内,易知x(2-x)max=1,
故k>$\frac{1}{9}$即为所求范围.

点评 考查利用函数单调性的定义探讨抽象函数的单调性问题,对于解决抽象函数的一般采用赋值法,求某些点的函数值和证明不等式等,体现了转化的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-a2x-2ax+1(a>0,a≠1).
(1)求函数f(x)的值域;
(2)当x∈[-2,1]时.,函数f(x)的值为-7.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+$\sqrt{3}$y=0相切于M(3,-$\sqrt{3}$)点,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则$\frac{y}{x}$的取值范围为[$\frac{1}{2},2$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的通项an=n2-n,求前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(sinx)=cos2x,那么f(cosx)等于(  )
A.sin2xB.cos2xC.-sin2xD.-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知偶函数f(x)在区间[0,+∞)上是减函数,则满足f(2t-1)>f($\frac{1}{2}$)的实数t的取值范围是($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在等差数列{an}中,a2+a8=26,且a3=7.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\frac{lg2+lg5-lg1}{2lg\frac{1}{2}+lg8}$•(1g32-1g2)=4.

查看答案和解析>>

同步练习册答案