精英家教网 > 高中数学 > 题目详情
19.复数$\frac{1+ai}{2-i}$(a∈R,i为虚数单位)为纯虚数,则复数z=a+i的模为$\sqrt{5}$.

分析 直接由复数代数形式的乘除运算化简$\frac{1+ai}{2-i}$,再结合已知条件列出方程组,求解可得a的值,然后由复数求模公式计算得答案.

解答 解:∵$\frac{1+ai}{2-i}$=$\frac{(1+ai)(2+i)}{(2-i)(2+i)}=\frac{2-a+(1+2a)i}{5}$=$\frac{2-a}{5}+\frac{1+2a}{5}i$为纯虚数,
∴$\left\{\begin{array}{l}{\frac{2-a}{5}=0}\\{\frac{1+2a}{5}≠0}\end{array}\right.$,解得a=2.
∴z=2+i.
则复数z=2+i的模为:$\sqrt{{2}^{2}+1}=\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念以及复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知两条直线l1:4x+(a+3)y+(3a-5)=0,l2:(a+5)x+2y-8=0,问a为何值时,l1与l2
(Ⅰ)平行;
(Ⅱ)相交;
(Ⅲ)垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=2|x+1|-2,当f(f(x))=mx有四个解时,实数m的取值范围是(0,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.公比不为1的等比数列{an}的前n项和为Sn,且-2a1,-$\frac{1}{2}{a_2},{a_3}$成等差数列,若a1=1,则S4=(  )
A.-5B.0C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的顶点A(2,3),B(-2,1),重心G(1,2)
(1)求BC边中点D的坐标;        
(2)求AB边的高线所在直线的方程;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=logax(a>0,a≠1),且f(4)-f(2)=1.
(1)若f(3m-3)<f(2m+1),求实数m的取值范围;
(2)求使$f(x+\frac{2}{x})={log_2}3$成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的通项an=10n+5,n∈N *,其前n项和为Sn,令${T_n}=\frac{S_n}{{5•{2^n}}}$,若对一切正整数n,总有Tn≤m成立,则实数m的最小值是(  )
A.4B.3C.2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若(x2-3x+2)5=${a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_{10}}{x^{10}}$
(1)求a2
(2)求a1+a2+a3+…+a10
(3)求$({a_0}+{a_2}+{a_4}+{a_6}+{a_8}{+_{10}}{)^2}$-$({a_1}+{a_3}+{a_5}+{a_7}+{a_9}{)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.任何事件的概率总是在(0,1]之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,事件发生的频率一般会稳定于概率
D.概率是随机的,在试验前不能确定

查看答案和解析>>

同步练习册答案