精英家教网 > 高中数学 > 题目详情

【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结束,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间超过30分钟的概率是__________

【答案】

【解析】

由题意画出图形,由测度比为长度比得答案.

由题意可知,该市民在19:55至21:56之间的某个时刻欣赏月全食,其时间区间长度为121分钟.

该市民等待“红月亮”的时间超过30分钟,

则应该在19:55至21:01分之间的任意时刻到达,区间长度为66.

如图:

由测度比为长度比,可知他等待“红月亮”的时间超过30分钟的概率是

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列三种说法:

①命题p:x0∈R,tan x0=1,命题q:x∈R,x2-x+1>0,则命题“p∧()”是假命题.

②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3.

③命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

其中所有正确说法的序号为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:

测试指标

机床甲

8

12

40

32

8

机床乙

7

18

40

29

6

(1)试分别估计甲机床、乙机床生产的零件为优品的概率;

(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);

(3)从甲、乙机床生产的零件指标在内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的编号为1,2,3,4的球,从袋中随机抽取一个球,将其编号记为m,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为n,则关于x的一元二次方程无实根的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的极大值点,则a的取值范围为(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;

(2)将y表示为x的函数;

(3)根据频率分布直方图估计利润y不少于1050元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.

(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出的结果为1538,则判断框内可填入的条件为(

A.n>6?
B.n>7?
C.n>8?
D.n>9?

查看答案和解析>>

同步练习册答案