精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)的焦点F和椭圆
x2
4
+
y2
3
=1
的右焦点重合,直线l过点F交抛物线于A、B两点,点A、B在抛物线C的准线上的射影分别为点D、E.
(Ⅰ)求抛物线C的过程;
(Ⅱ)若直线l交y轴于点M,且
MA
=m
AF
MB
=n
BF
,对任意的直线l,m+n是否为定值?若是,求出m+n的值,否则,说明理由.
分析:(Ⅰ)由椭圆的右焦点F(1,0),知
p
2
=1,p=2
,由此能求出抛物线C的方程.
(Ⅱ)设直线l:y=k(x-1),l与y轴交于M(0,-k),设直线l交抛物线于A(x1,y1),B(x2,y2),由
y=k(x-1)
y2=4x
?k2x2-2(k2+2)x+k2=0
,再由根的判别式和韦达定理能推导出对任意的直线l,m+n为定值.
解答:解:(Ⅰ)∵椭圆的右焦点F(1,0),∴
p
2
=1,p=2

∴抛物线C的方程为y2=4x(3分)
(Ⅱ)由已知得直线l的斜率一定存在,所以设l:y=k(x-1),l与y轴交于M(0,-k),设直线l交抛物线于A(x1,y1),B(x2,y2),
y=k(x-1)
y2=4x
?k2x2-2(k2+2)x+k2=0

∴△=4(k2+2)2-4k4=16(k2+1)>0
x1+x2=
2k2+4
k2
x1x2=1
(7分)
又由
MA
=m
AF
,∴(x1,y1+k)=m(1-x1,-y1),∴x1=m(1-x1),
即m=
x1
1-x1
,同理n=
x2
1-x2
,(9分)
m+n=
x1
1-x1
+
x2
1-x2
=
x1+x2-2x1x2
1-(x1+x2)+x1x2
=-1

所以,对任意的直线l,m+n为定值-1(12分)
点评:本题考查抛物线方程的求法和判断m+n是否为定值.解题时要认真审题,注意挖掘题设中的隐含条件,灵活运用圆锥曲线的性质,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案