精英家教网 > 高中数学 > 题目详情
(2013•宁波模拟)如图,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
两点分别在线段AB、AC上,满足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.现将△ABC沿DE折成直二面角A-DE-B.
(1)求证:当λ=
1
2
时,面ADC⊥面ABE;
(2)当λ∈(0,1)时,直线AD与平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,请说明理由.
分析:(1)由题意可得∠ADB为二面角A-DE-B平面角,且∠ADB=
π
2
,可得AD⊥BE,由λ=
1
2
结合三角形的相似可得BE⊥DC,由线面垂直的判断定理可得;
(2)连结BE,过点D作DH⊥BE于H,连结AH,过点D作DO⊥AH于O.可证∠DAO为AD与平面ABE所成角,由三角形的知识可建立关于λ的方程,解之可得.
解答:解:(1)∵
AD
AB
=
AE
AC
,∴DE∥BC,∴DE⊥AD,DE⊥BD,
∴∠ADB为二面角A-DE-B平面角,且∠ADB=
π
2
.           (2分)
∴AD⊥面BCD,又∵BE?面BCD,∴AD⊥BE(4分)
又当λ=
1
2
时,BD=
2
2
,DE=
1
2
,BC=1
,可得
BD
DE
=
BC
BD

∴△BDE∽△DBC,∴∠EBD=∠DCB,∴BE⊥DC    (6分)
∴BE⊥面ADC,又BE?面ABE,∴面ABE⊥面ADC    (7分)
(2)连结BE,过点D作DH⊥BE于H,连结AH,过点D作DO⊥AH于O.如图:
∵AD⊥BE,BE⊥DH∴BE⊥面ADHDO?面ADH,∴BE⊥DO,又DO⊥AH,
∴DO⊥面ABE,所以∠DAO为AD与平面ABE所成角         (10分)
在Rt△ADH中,tan∠DAO=
DH
DA
,Rt△BDE中,BD=
2
(1-λ),DE=λ

DH=
2
(1-λ)λ
λ2+2(1-λ)2
,又AD=
2
λ

∠DAO=
π
6
,则
(1-λ)
λ2+2(1-λ)2
=
3
3
,解得λ=
1
2
(14分)
点评:本题考查直线与平面垂直的判定,涉及线面角和二面角,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,x轴被曲线C2:y=x2-b截得的线段长等于C1的短轴长.C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于点D、E.
(1)求C1、C2的方程;
(2)求证:MA⊥MB.
(3)记△MAB,△MDE的面积分别为S1、S2,若
S1
S2
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)若方程x2-5x+m=0与x2-10x+n=0的四个根适当排列后,恰好组成一个首项1的等比数列,则m:n值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知F1、F2是椭圆的两个焦点,满足
MF1
MF2
的点M总在椭圆内部,则椭圆离心率的取值范围是
(O,
2
2
(O,
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知f(x)=ax-lnx,x∈(0,e],其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的单调区间和极值;
(2)若f(x)≥3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为sn
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)若数列{bn}满足 bn=
1
sn+1-1
,其前n项和为Tn,求证Tn
3
4

查看答案和解析>>

同步练习册答案