【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.
![]()
(1)求
的值;
(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+
x2﹣ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且满足S4=24,S7=63. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若
,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的最大值;
(2)若对于任意
,均有
,求正实数
的取值范围;
(3)是否存在实数
,使得不等式
对于任意
恒成立?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知
,sinA=
. (Ⅰ)求sinC的值;
(II)设D为AC的中点,若△ABC的面积为8
,求BD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x+2sinxcosx+3cos2x. (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[0,
],求函数f(x)的最值及相应x的取值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的前
项中,奇数项的和为56,偶数项的和为48,且
(其中
).
(1)求数列
的通项公式;
(2)若
,
,…,
,…是一个等比数列,其中
,
,求数列
的通项公式;
(3)若存在实数
,
,使得
对任意
恒成立,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com