【题目】已知函数.
(1)求函数的最大值;
(2)若对于任意,均有,求正实数的取值范围;
(3)是否存在实数,使得不等式对于任意恒成立?若存在,求出的取值范围;若不存在,说明理由.
【答案】(1)见解析;(2);(3)见解析.
【解析】分析:(1)先得出g(x)的具体表达式,然后结合基本不等式即可;
(2),设则.则在恒成立,接下来只需研究函数单调性确定其最小值解不等式即可;(3)存在实数,使得不等式对于任意恒成立,即存在实数,使得不等式对于任意恒成立,故研究函数单调性确定函数的最大值解不等式求解即可.
详解:
(1)
= ,
当且仅当即当时取,所以当时,.
(2)
设则.
则在恒成立,
记,
当时,在区间上单调增.
故,不成立.
当时,在区间上单调减,
在区间上单调增.
从而,,所以.
(3)存在实数,使得不等式对于任意恒成立,
即存在实数,使得不等式对
于任意恒成立,
记,则,
当时,,则在为增函数.
,此时不成立.
当时,由得,
当时,,则在为增函数.
当时,,则在为减函数.
所以,
当时.
满足题意当时,令,则记,则
当时,,,在为减函数.
,不成立,
当时,,,在为增函数.
,不成立综上,时满足题意.
科目:高中数学 来源: 题型:
【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:
失眠 | 不失眠 | 合计 | |
晚上喝绿茶 | 16 | 40 | 56 |
晚上不喝绿茶 | 5 | 39 | 44 |
合计 | 21 | 79 | 100 |
由已知数据可以求得:,则根据下面临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的结论是( )
A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”
B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”
C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”
D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,有、、三座城市,城在城的正西方向,且两座城市之间的距离为;城在城的正北方向,且两座城市之间的距离为.由城到城只有一条公路,甲有急事要从城赶到城,现甲先从城沿公路步行到点(不包括、两点)处,然后从点处开始沿山路赶往城.若甲在公路上步行速度为每小时,在山路上步行速度为每小时,设(单位:弧度),甲从城赶往城所花的时间为(单位:).
(1)求函数的表达式,并求函数的定义域;
(2)当点在公路上何处时,甲从城到达城所花的时间最少,并求所花的最少的时间的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知且,设命题:函数在上单调递减,命题:对任意实数,不等式恒成立.
(1)写出命题的否定,并求非为真时,实数的取值范围;
(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前项和为,满足.
(Ⅰ)(i)求数列的通项公式;
(ii)已知对于,不等式恒成立,求实数的最小值;
(Ⅱ) 数列的前项和为,满足,是否存在非零实数,使得数列为等比数列? 并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.
(1)求的值;
(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3 , 则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣ , ]上的所有零点的和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)= x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是( )
A.(1,2)
B.[1,2)
C.[0,2)
D.(0,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(2 , ),曲线C的参数方程为 (α为参数).
(1)直线l过M且与曲线C相切,求直线l的极坐标方程;
(2)点N与点M关于y轴对称,求曲线C上的点到点N的距离的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com