【题目】已知函数(为自然对数的底数,),在处的切线为.
(1)求函数的解析式;
(2)在轴上是否存在一点,使得过点可以作的三条切钱?若存在,请求出横坐标为整数的点坐标;若不存在,请说明理由.
【答案】(1)(2)不存在横坐标为整数的点,过该点可以作的三条切线.
【解析】分析:(1) 求出f(x)的导数,由切线方程可得切线斜率和切点坐标,可得a=2,即可得到f(x)的解析式;(2) 令,设图象上一点,,该处的切线, 又过点则 过作3条不同的切线,则方程有3个不同实根,进而构造,图象与轴有3个不同交点
详解:(1),
由题意可知
,,即
(2),令,
设图象上一点,,
该处的切线
又过点则 ①
过作3条不同的切线,则方程①关于有3个不同实根
令,图象与轴有3个不同交点
(1)当,,是单调函数,不可能有3个零点
(2)当,或时,当时,
所以在单调递减,单调递增,单调递减
曲线与轴有个交点,应该满足
,,当,又,所以无解
(3)当,或时,,当时,
在单调递减,单调递增,单调递减,应满足
,,当,又,无解,
综上,不存在横坐标为整数的点,过该点可以作的三条切线.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x﹣a|, (Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2﹣a|对x∈(0,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间.
(1)求实数的值及参加“掷铅球”项目测试的人数;
(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论
函数的最大值为;
已知函数且在上是减函数,则a的取值范围是;
在同一坐标系中,函数与的图象关于y轴对称;
在同一坐标系中,函数与的图象关于直线对称.
其中正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在上是减函数,在上是增函数若函数,利用上述性质,
Ⅰ当时,求的单调递增区间只需判定单调区间,不需要证明;
Ⅱ设在区间上最大值为,求的解析式;
Ⅲ若方程恰有四解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数关于函数的性质,有以下四个推断:
①的定义域是; ②的值域是;
③是奇函数; ④是区间上的增函数.
其中推断正确的题号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com