精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数,),在处的切线为.

(1)求函数的解析式;

(2)在轴上是否存在一点,使得过点可以作的三条切钱?若存在,请求出横坐标为整数的点坐标;若不存在,请说明理由.

【答案】(1)(2)不存在横坐标为整数的点,过该点可以作的三条切线.

【解析】分析:(1) 求出f(x)的导数,由切线方程可得切线斜率和切点坐标,可得a=2,即可得到f(x)的解析式;(2),设图象上一点该处的切线, 又过点作3条不同的切线,则方程有3个不同实根,进而构造图象与轴有3个不同交点

详解:(1)

由题意可知

(2),令

图象上一点

该处的切线

过点

作3条不同的切线,则方程①关于有3个不同实根

图象与轴有3个不同交点

(1)当是单调函数,不可能有3个零点

(2)当时,时,

所以单调递减,单调递增,单调递减

曲线轴有个交点,应该满足

,当,又,所以无解

(3)当时,,当时,

单调递减,单调递增,单调递减,应满足

,当,又,无解,

综上,不存在横坐标为整数的点,过该点可以作的三条切线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数

(Ⅰ)讨论的单调性;

(Ⅱ)若有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣a|, (Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2﹣a|对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米11米(含7米11米,假定该校高一女生掷铅球均不超过11米)为优秀把获得的所有数据,分成五组,画出频率分布直方图如图所示已知有4名学生的成绩在9米11米之间

(1)求实数的值及参加“掷球”项目测试的人数;

(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论

函数的最大值为

已知函数上是减函数,则a的取值范围是

在同一坐标系中,函数的图象关于y轴对称;

在同一坐标系中,函数的图象关于直线对称.

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是减函数,在上是增函数若函数,利用上述性质,

时,求的单调递增区间只需判定单调区间,不需要证明

在区间上最大值为,求的解析式;

若方程恰有四解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数关于函数的性质,有以下四个推断:

的定义域是 的值域是

是奇函数; 是区间上的增函数.

其中推断正确的题号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lx+2y-2=0.试求:

1)点P-2-1)关于直线l的对称点坐标;

2)直线l关于点(11)对称的直线方程.

查看答案和解析>>

同步练习册答案