精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y),当x<0时,f(x)<0.
(1)求证:f(x)是奇函数;
(2)解关于x的不等式:f(mx2)-2f(x)>f(m2x)-2f(m).(m>0,且m为常数).
分析:(1)令x=y=0可求出f(0)的值,然后令x+y=0,即y=-x可得f(-x)=-f(x),然后根据奇函数的定义进行判断即可;
(2)先根据单调性的定义证明函数的单调性,然后根据条件化简不等式得f(mx2+2m)>f(m2x+2x),然后根据单调性建立不等式,解之即可.
解答:(1)证明:∵f(x+y)=f(x)+f(y),
令x=y=0,得f(0)=f(0)+f(0),即f(0)=0.
令x+y=0,即y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x)
∴f(x)是奇函数
(2)解:设x1、x2∈R,且x1<x2,则x1-x2<0,由已知得f(x1-x2)<0.
∴f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)<0
∴f(x1)<f(x2)即f(x)在R上是增函数.
又2f(m)=f(m)+f(m)=f(2m).
同理2f(x)=f(2x)
f(mx2)-2f(x)>f(m2x)-2f(m)
?f(mx2)+f(2m)>f(m2x)+f(2x)
?f(mx2+2m)>f(m2x+2x)
?mx2+2m>m2x+2x
?mx2-(m2+2)x+2m>0
∵m>0,∴x2-(m+
2
m
)x+2>0

(x-
2
m
)(x-m)>0

2
m
<m
,即m>
2
时,不等式的解集为{x|x<
2
m
或x>m};
2
m
>m,即0<m<
2
时,不等式的解集为{x|x<m或x>
2
m
}.
点评:本题主要考查了函数奇偶性的判定,以及函数单调性的证明和不等式的解法,同时考查了的等价转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案